Geometrically nonlinear stress-deflection relations for thin film/substrate systems with a finite element comparison

被引:0
|
作者
Masters, C.B.
Salamon, N.J.
机构
来源
关键词
Nonlinear stress deflection relations - Rayleigh-Ritz method - Second order polynomials - Thin film/substrate systems - Transverse stresses;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:872 / 878
相关论文
共 50 条
  • [1] GEOMETRICALLY NONLINEAR STRESS DEFLECTION RELATIONS FOR THIN-FILM SUBSTRATE SYSTEMS WITH A FINITE-ELEMENT COMPARISON
    MASTERS, CB
    SALAMON, NJ
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1994, 61 (04): : 872 - 878
  • [2] GEOMETRICALLY NONLINEAR STRESS DEFLECTION RELATIONS FOR THIN-FILM SUBSTRATE SYSTEMS
    MASTERS, CB
    SALAMON, NJ
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1993, 31 (06) : 915 - 925
  • [3] Comparison of finite element and finite volume methods application in geometrically nonlinear stress analysis
    Fallah, NA
    Bailey, C
    Cross, M
    Taylor, GA
    APPLIED MATHEMATICAL MODELLING, 2000, 24 (07) : 439 - 455
  • [4] LARGE DEFLECTION, GEOMETRICALLY NONLINEAR FINITE-ELEMENT ANALYSIS OF CIRCULAR ARCHES
    SABIR, AB
    LOCK, AC
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 1973, 15 (01) : 37 - 47
  • [5] GEOMETRICALLY NONLINEAR FINITE ELEMENT ANALYSIS OF ARBITRARY THIN PLATES
    Panda, Saleema
    Barik, Manoranjan
    IMPLEMENTING INNOVATIVE IDEAS IN STRUCTURAL ENGINEERING AND PROJECT MANAGEMENT, 2015, : 469 - 474
  • [6] Finite element analysis of the indentation stress characteristics of the thin film/substrate systems by flat cylindrical indenters
    Xu, B. X.
    Zhao, B.
    Yue, Z. F.
    MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, 2006, 37 (08) : 681 - 686
  • [7] Shallow shell finite element for the large deflection geometrically nonlinear analysis of shells and plates
    Univ of Wales Coll of Cardiff, Cardiff, United Kingdom
    Thin-Walled Struct, 3 (253-267):
  • [8] A simple finite element model for the geometrically nonlinear analysis of thin shells
    Providas, E
    Kattis, MA
    COMPUTATIONAL MECHANICS, 1999, 24 (02) : 127 - 137
  • [9] A simple finite element model for the geometrically nonlinear analysis of thin shells
    E. Providas
    M. A. Kattis
    Computational Mechanics, 1999, 24 : 127 - 137
  • [10] Comparison of Reduction Methods for Finite Element Geometrically Nonlinear Beam Structures
    Shen, Yichang
    Vizzaccaro, Alessandra
    Kesmia, Nassim
    Yu, Ting
    Salles, Loic
    Thomas, Olivier
    Touze, Cyril
    VIBRATION, 2021, 4 (01): : 175 - 204