Recurrence relations for rational cubic methods II. The Chebyshev method

被引:1
|
作者
Candela, V. [1 ]
Marquina, A. [1 ]
机构
[1] Dep de Analisis Matematico, Valencia, Spain
来源
Computing (Vienna/New York) | 1990年 / 45卷 / 04期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We continue the analysis of rational cubic methods, initiated in [7]. In this paper, we obtain a system of a priori error bounds for the Chebyshev method in Banach spaces through a local convergence theorem that provides sufficient conditions on the initial point in order to ensure the convergence of Chebyshev iterates. The error estimates are exact for second degree polynomials. We also discuss some applications.
引用
收藏
页码:355 / 367
相关论文
共 50 条
  • [1] RECURRENCE RELATIONS FOR RATIONAL CUBIC METHODS .2. THE CHEBYSHEV METHOD
    CANDELA, V
    MARQUINA, A
    COMPUTING, 1990, 45 (04) : 355 - 367
  • [2] RECURRENCE RELATIONS FOR RATIONAL CUBIC METHODS .1. THE HALLEY METHOD
    CANDELA, V
    MARQUINA, A
    COMPUTING, 1990, 44 (02) : 169 - 184
  • [3] Reduced recurrence relations for the Chebyshev method
    Hernandez, MA
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1998, 98 (02) : 385 - 397
  • [4] Reduced Recurrence Relations for the Chebyshev Method
    M. A. Hernández
    Journal of Optimization Theory and Applications, 1998, 98 : 385 - 397
  • [5] New recurrence relations for Chebyshev method
    Gutierrez, JM
    Hernandez, MA
    APPLIED MATHEMATICS LETTERS, 1997, 10 (02) : 63 - 65
  • [6] New recurrence relations for Chebyshev method
    Dept. of Mathematics and Computation, University of La Rioja, C/ Luis de Ulloa s/n, 26004, Logrono, Spain
    Appl Math Lett, 2 (63-65):
  • [7] Recurrence Relations for Chebyshev-Type Methods
    J. A. Ezquerro
    M. A. Hernández
    Applied Mathematics and Optimization, 2000, 41 : 227 - 236
  • [8] Recurrence relations for Chebyshev-type methods
    Ezquerro, JA
    Hernández, MA
    APPLIED MATHEMATICS AND OPTIMIZATION, 2000, 41 (02): : 227 - 236
  • [9] A NONLINEAR RECURRENCE AND ITS RELATIONS TO CHEBYSHEV POLYNOMIALS
    Alperin, Roger C.
    FIBONACCI QUARTERLY, 2020, 58 (02): : 140 - 142
  • [10] Metamorphic Relations Identification on Chebyshev Rational Approximation Method in the Nuclide Depletion Calculation Program
    Li, Meng
    Wang, Lijun
    Yan, Shiyu
    Yang, Xiaohua
    Liu, Jie
    Wan, Yapin
    COMPANION OF THE 2020 IEEE 20TH INTERNATIONAL CONFERENCE ON SOFTWARE QUALITY, RELIABILITY, AND SECURITY (QRS-C 2020), 2020, : 1 - 6