How to prove higher order theorems in first order logic

被引:0
|
作者
机构
来源
| 1600年 / Morgan Kaufmann Publ Inc, San Mateo, CA, USA卷 / 01期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Lindstrom theorems for fragments of first-order logic
    ten Cate, Balder
    van Benthem, Johan
    Vaeaenaenen, Jouko
    22ND ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, PROCEEDINGS, 2007, : 280 - +
  • [2] LINDSTROM THEOREMS FOR FRAGMENTS OF FIRST-ORDER LOGIC
    Van Benthem, Johan
    Ten Cate, Balder
    Vaananen, Jouko
    LOGICAL METHODS IN COMPUTER SCIENCE, 2009, 5 (03)
  • [3] Weak cardinality theorems for first-order logic
    Tantau, T
    FUNDAMENTALS OF COMPUTATION THEORY, PROCEEDINGS, 2003, 2751 : 400 - 411
  • [4] Combinatorial Proofs and Decomposition Theorems for First-order Logic
    Hughes, Dominic J. D.
    Strassburger, Lutz
    Wu, Jui-Hsuan
    2021 36TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS), 2021,
  • [5] First-Order Logic on Higher-Order Nested Pushdown Trees
    Kartzow, Alexander
    ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 2013, 14 (02)
  • [6] Model checking the first-order fragment of higher-order fixpoint logic
    Axelsson, Roland
    Lange, Martin
    LOGIC FOR PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND REASONING, PROCEEDINGS, 2007, 4790 : 62 - +
  • [7] First-Order Logic Formalisation of Impossibility Theorems in Preference Aggregation
    Umberto Grandi
    Ulle Endriss
    Journal of Philosophical Logic, 2013, 42 : 595 - 618
  • [8] First-Order Logic Formalisation of Impossibility Theorems in Preference Aggregation
    Grandi, Umberto
    Endriss, Ulle
    JOURNAL OF PHILOSOPHICAL LOGIC, 2013, 42 (04) : 595 - 618
  • [9] Connecting Higher-Order Separation Logic to a First-Order Outside World
    Mansky, William
    Honore, Wolf
    Appel, Andrew W.
    PROGRAMMING LANGUAGES AND SYSTEMS ( ESOP 2020): 29TH EUROPEAN SYMPOSIUM ON PROGRAMMING, 2020, 12075 : 428 - 455
  • [10] How to represent opaque sentences in first order logic
    1600, Morgan Kaufmann Publ Inc, San Mateo, CA, USA (01):