Critical points of embeddings of H01,n into Orlicz spaces

被引:0
|
作者
Struwe, Michael [1 ]
机构
[1] E.T.H.-Zentrum, Zürich,8092, Switzerland
关键词
35 J 60 - 58 E 15 - limiting exponent - Limiting problem - local compactness - Sobolev embedding - Variational methods;
D O I
10.1016/S0294-1449(16)30338-9
中图分类号
学科分类号
摘要
For a domain Ω ⊂ n embeddings u → exp(α(|u|/u1, n)n/n − 1) of H01,n(Ω) into Orlicz spaces are considered. At the critical exponent α = αn a loss of compactness reminiscent of the Yamabe problem is encountered; however by a result of Carlesson and Chang, if Ω is a ball the best constant for the above embedding is attained. In dimension n = 2 we identify the limiting problem responsible for the lack of compactness at the critical exponent α2 = 4π in the radially symmetric case and establish the existence of extremal functions also for nonsymmetric domains Ω. Moreover, we establish the existence of two branches of critical points of this embedding beyond the critical exponent α2 = 4π. © 2016 L'Association Publications de l'Institut Henri Poincaré
引用
收藏
页码:425 / 464
相关论文
共 50 条