Quantitative surface microanalysis of samples with extreme topography utilising image interpretation by scatter diagrams and principal component analysis

被引:0
|
作者
Department of Physics, University of York, Heslington, York, YO1 5DD, United Kingdom [1 ]
不详 [2 ]
不详 [3 ]
机构
来源
ULTRAMICROSCOPY | / 3-4卷 / 193-203期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
19
引用
收藏
相关论文
共 21 条
  • [1] Quantitative surface microanalysis of samples with extreme topography utilising image interpretation by scatter diagrams and principal component analysis
    Barkshire, IR
    Kenny, PG
    Fletcher, IW
    Prutton, M
    ULTRAMICROSCOPY, 1996, 63 (3-4) : 193 - 203
  • [2] Quantitative Analysis and Interpretation of Transient Electromagnetic Data via Principal Component Analysis
    Kass, M. Andy
    Li, Yaoguo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (05): : 1910 - 1918
  • [3] Quantitative Interpretation of Mineral Hyperspectral Images Based on Principal Component Analysis and Independent Component Analysis Methods
    Jiang, Xiping
    Jiang, Yu
    Wu, Fang
    Wu, Fenghuang
    APPLIED SPECTROSCOPY, 2014, 68 (04) : 502 - 509
  • [4] Principal component analysis and quantitative image analysis to predict effects of toxics in anaerobic granular sludge
    Costa, J. C.
    Alves, M. M.
    Ferreira, E. C.
    BIORESOURCE TECHNOLOGY, 2009, 100 (03) : 1180 - 1185
  • [5] Principal component analysis for surface reflection components and structure in the facial image and synthesis of the facial image in various ages
    Hirose, Misa
    Toyota, Saori
    Ojima, Nobutoshi
    Ogawa-Ochiai, Keiko
    Tsumura, Norimichi
    MEASURING, MODELING, AND REPRODUCING MATERIAL APPEARANCE 2015, 2015, 9398
  • [6] Quantitative evaluation of flower colour pattern by image analysis and principal component analysis of Primula sieboldii E. Morren
    Y. Yoshioka
    H. Iwata
    R. Ohsawa
    S. Ninomiya
    Euphytica, 2004, 139 : 179 - 186
  • [7] Quantitative evaluation of flower colour pattern by image analysis and principal component analysis of Primula sieboldii E. Morren
    Yoshioka, Y
    Iwata, H
    Ohsawa, R
    Ninomiya, S
    EUPHYTICA, 2004, 139 (03) : 179 - 186
  • [8] Quantitative thickness prediction of tectonically deformed coal using Extreme Learning Machine and Principal Component Analysis: a case study
    Wang, Xin
    Li, Yan
    Chen, Tongjun
    Yan, Qiuyan
    Ma, Li
    COMPUTERS & GEOSCIENCES, 2017, 101 : 38 - 47
  • [9] Image compression of surface defects of the hot-rolled steel strip using Principal Component Analysis
    Boudiaf, Adel
    Boubendira, Khaled
    Harrar, Khaled
    Saadoune, Achour
    Ghodbane, Hatem
    Dahane, Amine
    Messai, Oussama
    MATERIAUX & TECHNIQUES, 2019, 107 (02):
  • [10] DIGITAL SURFACE PHOTOMETRY OF GALAXIES TOWARD A QUANTITATIVE CLASSIFICATION .4. PRINCIPAL COMPONENT ANALYSIS OF SURFACE-PHOTOMETRIC PARAMETERS
    WATANABE, M
    KODAIRA, K
    OKAMURA, S
    ASTROPHYSICAL JOURNAL, 1985, 292 (01): : 72 - 78