NEW TERMS IN MHD EQUATIONS AND THEIR IMPLICATIONS FOR THE INERTIAL CONFINEMENT FUSION CONCEPT.

被引:0
|
作者
Auluck, S.K.H. [1 ]
机构
[1] BARC, Bombay, India, BARC, Bombay, India
关键词
EQUATIONS OF MOTION - MAGNETIC FIELDS - NUCLEAR REACTORS; FUSION; -; PLASMAS; Confinement;
D O I
暂无
中图分类号
学科分类号
摘要
The MHD equations are rederived without neglecting the electron inertia and new terms are obtained. The revised equations predict that strong magnetic fields are spontaneously generated even in an ideally symmetric ICF implosion in contrast to the conventional theory where an ideal ICF implosion is considered to be free of magnetic fields. The complexity of the implosion problem is illustrated with reference to cylindrical and spherical geometries. The existence of this effect has been verified in the case of a Z-pinch. Experiments can be devised to detect it in existing ICF installations. It is suggested that scientific breakeven may be achieved using existing installations if the targets are optimized in accordance with the present theory.
引用
收藏
页码:211 / 234
相关论文
共 50 条
  • [2] Principles of inertial confinement fusion - Physics of implosion and the concept of inertial fusion energy
    Nakai, S
    Takabe, H
    REPORTS ON PROGRESS IN PHYSICS, 1996, 59 (09) : 1071 - 1131
  • [3] APPLICATION OF INDUCTION MHD GENERATOR TO INERTIAL CONFINEMENT FUSION REACTOR.
    Ishikawa, Motoo
    Higashi, Seiji
    Yoshikawa, Kiyoshi
    Technical Reports of the Institute of Atomic Energy, Kyoto University, 1981, (188): : 1 - 11
  • [4] Progress in the shock-ignition inertial confinement fusion concept
    Theobald, W.
    Casner, A.
    Nora, R.
    Ribeyre, X.
    Lafon, M.
    Anderson, K. S.
    Betti, R.
    Craxton, R. S.
    Delettrez, J. A.
    Frenje, J. A.
    Glebov, V. Yu.
    Gotchev, O. V.
    Hohenberger, M.
    Hu, S. X.
    Marshall, F. J.
    McCrory, R. L.
    Meyerhofer, D. D.
    Perkins, L. J.
    Sangster, T. C.
    Schurtz, G.
    Seka, W.
    Smalyuk, V. A.
    Stoeckl, C.
    Yaakobi, B.
    IFSA 2011 - SEVENTH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS, 2013, 59
  • [5] Equations of State for Ablator Materials in Inertial Confinement Fusion Simulations
    Sterne, P. A.
    Benedict, L. X.
    Hamel, S.
    Correa, A. A.
    Milovich, J. L.
    Marinak, M. M.
    Celliers, P. M.
    Fratanduono, D. E.
    9TH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS (IFSA 2015), 2016, 717
  • [6] LIQUID-LITHIUM WATERFALL INERTIAL CONFINEMENT FUSION REACTOR CONCEPT
    MANISCALCO, JA
    MEIER, WR
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1977, 26 : 62 - 63
  • [7] NON-ELECTRIC APPLICATIONS OF THE INERTIAL ELECTROSTATIC CONFINEMENT FUSION CONCEPT
    Kulcinski, Gerald L.
    Santarius, John F.
    FUSION SCIENCE AND TECHNOLOGY, 2013, 64 (02) : 365 - 372
  • [8] Initial experiments on the shock-ignition inertial confinement fusion concept
    Theobald, W.
    Betti, R.
    Stoeckl, C.
    Anderson, K. S.
    Delettrez, J. A.
    Glebov, V. Yu.
    Goncharov, V. N.
    Marshall, F. J.
    Maywar, D. N.
    McCrory, R. L.
    Meyerhofer, D. D.
    Radha, P. B.
    Sangster, T. C.
    Seka, W.
    Shvarts, D.
    Smalyuk, V. A.
    Solodov, A. A.
    Yaakobi, B.
    Zhou, C. D.
    Frenje, J. A.
    Li, C. K.
    Seguin, F. H.
    Petrasso, R. D.
    Perkins, L. J.
    PHYSICS OF PLASMAS, 2008, 15 (05)
  • [9] INERTIAL CONFINEMENT FUSION-REACTORS BASED ON THE GAS PROTECTION CONCEPT
    ABDELKHALIK, SI
    MOSES, GA
    PETERSON, RR
    NUCLEAR ENGINEERING AND DESIGN, 1981, 63 (02) : 315 - 329
  • [10] New aspects for fusion energy using inertial confinement
    Hora, Heinrich
    LASER AND PARTICLE BEAMS, 2007, 25 (01) : 37 - 45