Analysis of strain and defect formation in low-dimensional structures in SiC

被引:0
|
作者
Kaiser, U. [1 ]
Saitoh, K. [2 ]
Chuvilin, A. [3 ]
机构
[1] Inst. für Festkörperphysik, Friedrich-Schiller-Univ. Jena, Max-Wien-Platz 1, DE-07743 Jena, Germany
[2] Res. Inst. for Sci. Measurements, Tohoku University Sendai, Sendai, Japan
[3] Boreskov Institute of Catalysis, SB RAS, av. Lavrentieva 5, RU-630090 Novosibirsk 90, Russia
关键词
Annealing - Crack propagation - Crystal growth - Crystal orientation - Electron diffraction - Ion implantation - Lattice constants - Molecular beam epitaxy - Phase transitions - Stacking faults - Strain - Transmission electron microscopy;
D O I
暂无
中图分类号
学科分类号
摘要
Advanced transmission electron microscopy techniques have been used to study strain formation in low dimensional structures grown by molecular beam epitaxy (MBE) and after Ge+- or Si+-ion implantation and subsequent annealing. Convergent beam electron diffraction patterns (CBED) show that the lattice parameter a of defect-free 3C-SiC MBE quantum films corresponds to that of cubic bulk SiC, however the structure is rhombohedral distorted. A highly defective 3C-SiC layer is formed after room temperature implantation of Ge+ and annealing. Cracks in the cubic layer have wide strain fields which result in a 6H&rarr3C polytype transformation. In contrast to the thin cubic layers grown by MBE, the resulting cubic stripes are not distorted. ALCHEMI (atom location by channeling enhanced microanalysis) experiments in combination with Bloch wave calculations suggested that for certain implantation conditions the Ge atoms are clustered and located on interstitial positions, straining the SiC matrix. Si nanocrystals formed in the 6H-SiC matrix by Si implantation are unstrained although stacking faults (SFs) parallel to (0001) planes are seen. For Si nanocrystals grown on the surface of cubic SiC, SFs are often seen propagating from the 3C-SiC layer to the dot. Crystals that are 5 to 15nm in size grow in two orientations differing in the misfit to the substrate showing in both orientations only a little strain however larger crystals grow only with the orientation relationship of (111)SiC // (111)Si and (112)SiC // (112)Si.
引用
收藏
页码:259 / 262
相关论文
共 50 条
  • [1] Analysis of strain and defect formation in low-dimensional structures in SiC
    Kaiser, U
    Saitoh, K
    Chuvilin, A
    SILICON CARBIDE AND RELATED MATERIALS, ECSCRM2000, 2001, 353-356 : 259 - 262
  • [2] Effects of Strain in Low-Dimensional Semiconductor Structures
    Yu, J. L.
    Chen, Y. H.
    Liu, Y.
    Cheng, S. Y.
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2017, 9 (07) : 1066 - 1082
  • [3] MBE-growth of heteropolytypic low-dimensional structures of SiC
    Fissel, A
    Kaiser, U
    Schröter, B
    Kräusslich, J
    Richter, W
    THIN SOLID FILMS, 2000, 380 (1-2) : 89 - 91
  • [4] Formation of low-dimensional structures in the InSb/AlAs heterosystem
    D. S. Abramkin
    A. K. Bakarov
    M. A. Putyato
    E. A. Emelyanov
    D. A. Kolotovkina
    A. K. Gutakovskii
    T. S. Shamirzaev
    Semiconductors, 2017, 51 : 1233 - 1239
  • [5] The formation of low-dimensional structures by compressive plasma flows
    Uglov, VV
    Anishchik, VM
    Cherenda, NN
    Sveshnikov, YV
    Astashynski, VM
    Kostyukevich, EA
    Kuzmitski, AM
    Askerko, VV
    Thorwath, G
    Stritzker, B
    Kvasov, NT
    Danilyuk, LA
    SURFACE & COATINGS TECHNOLOGY, 2005, 200 (1-4): : 297 - 300
  • [6] Formation of low-dimensional structures in the InSb/AlAs heterosystem
    Abramkin, D. S.
    Bakarov, A. K.
    Putyato, M. A.
    Emelyanov, E. A.
    Kolotovkina, D. A.
    Gutakovskii, A. K.
    Shamirzaev, T. S.
    SEMICONDUCTORS, 2017, 51 (09) : 1233 - 1239
  • [7] Molecular beam epitaxial growth of heteropolytypic and low-dimensional structures of SiC
    Fissel, A
    Kaiser, U
    Schröter, B
    Kräusslich, J
    Hobert, H
    Richter, W
    SILICON CARBIDE AND RELATED MATERIALS - 1999 PTS, 1 & 2, 2000, 338-3 : 205 - 208
  • [8] On the dimensional characteristics of low-dimensional structures
    Blood, P
    PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES VIII, PTS 1 AND 2, 2000, 3944 : 171 - 180
  • [9] Non-linear strain theory for low-dimensional semiconductor structures
    Lassen, B.
    Melnik, R.
    Willatzen, M.
    Voon, L. C. Lew Yan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 63 (5-7) : E1607 - E1617
  • [10] GaN Low-dimensional Structures
    Dyadenchuk, A. F.
    Kidalov, V. V.
    JOURNAL OF NANO- AND ELECTRONIC PHYSICS, 2014, 6 (04)