On the information rate of secret sharing schemes

被引:0
|
作者
Universita di Salerno, Baronissi, Italy [1 ]
机构
来源
Theor Comput Sci | / 2卷 / 283-306期
关键词
Computational complexity - Data structures - Graph theory - Optimal systems - Security of data - Set theory - Theorem proving;
D O I
暂无
中图分类号
学科分类号
摘要
We derive new limitations on the information rate and the average information rate of secret sharing schemes for access structure represented by graphs. We give the first proof of the existence of access structures with optimal information rate and optimal average information rate less than 1/2 + Ε, where Ε is an arbitrary positive constant. We also consider the problem of testing if one of these access structures is a substructure of an arbitrary access structure and we show that this problem is NP-complete. We provide several general lower bounds on information rate and average information rate of graphs. In particular, we show that any graph with n vertices admits a secret sharing scheme with information rate Ω((log n)/n).
引用
收藏
相关论文
共 50 条
  • [1] On the information rate of secret sharing schemes
    Blundo, C
    DeSantis, A
    Gargano, L
    Vaccaro, U
    THEORETICAL COMPUTER SCIENCE, 1996, 154 (02) : 283 - 306
  • [2] On the information rate of perfect secret sharing schemes
    van, Dijk, Marten
    Designs, Codes, and Cryptography, 1995, 6 (02):
  • [3] Tight Bounds on the Information Rate of Secret Sharing Schemes
    Carlo Blundo
    Alfredo De Santis
    Roberto De Simone
    Ugo Vaccaro
    Designs, Codes and Cryptography, 1997, 11 (2) : 107 - 110
  • [4] NEW BOUNDS ON THE INFORMATION RATE OF SECRET SHARING SCHEMES
    BIUNDO, C
    DESANTIS, A
    GAGGIA, AG
    VACCARO, U
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (02) : 549 - 554
  • [5] Optimal Information Rate of Secret Sharing Schemes on Trees
    Csirmaz, Laszlo
    Tardos, Gabor
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (04) : 2527 - 2530
  • [6] Efficient Secret Sharing Schemes Achieving Optimal Information Rate
    Wang, Yongge
    Desmedt, Yvo
    2014 IEEE INFORMATION THEORY WORKSHOP (ITW), 2014, : 516 - 520
  • [7] Bounds on the information rate of quantum-secret-sharing schemes
    Sarvepalli, Pradeep
    PHYSICAL REVIEW A, 2011, 83 (04):
  • [8] SOME IMPROVED BOUNDS ON THE INFORMATION RATE OF PERFECT SECRET SHARING SCHEMES
    BRICKELL, EF
    STINSON, DR
    LECTURE NOTES IN COMPUTER SCIENCE, 1991, 537 : 242 - 252
  • [9] Lower bounds on the information rate of secret sharing schemes with homogeneous access structure
    Padró, C
    Sáez, G
    INFORMATION PROCESSING LETTERS, 2002, 83 (06) : 345 - 351
  • [10] On the Combinatorial Approaches of Computing Upper Bounds on the Information Rate of Secret Sharing Schemes
    Zhou, Zhanfei
    INFORMATION SECURITY AND CRYPTOLOGY, 2011, 6584 : 115 - 124