NONLINEAR RANDOM VIBRATION IN MECHANICAL SYSTEMS.

被引:0
|
作者
Roberts, J.B. [1 ]
Dunne, J.F. [1 ]
机构
[1] Univ of Sussex, Brighton, Engl, Univ of Sussex, Brighton, Engl
来源
Shock and Vibration Digest | 1988年 / 20卷 / 06期
关键词
MATHEMATICAL TECHNIQUES - Nonlinear Equations - PROBABILITY - Random Processes;
D O I
10.1177/058310248802000604
中图分类号
学科分类号
摘要
This article reviews various approaches to the solution of nonlinear random vibration problems that were published from 1984 through 1986. Particular attention is paid to methods of solving a linear partial differential equation known as the Fokker-Planck-Kolmogorov (FPK) equation, or forward diffusion equation. An approximate method of solution, the stochastic averaging method, and finite-difference and finite-element numerical methods of solution are considered.
引用
收藏
页码:16 / 25
相关论文
共 50 条
  • [1] RANDOM VIBRATION OF DEGRADING, PINCHING SYSTEMS.
    Baber, Thomas T.
    Noori, Mohammad N.
    Journal of Engineering Mechanics, 1985, 111 (08) : 1010 - 1026
  • [2] Torsional vibration in certain mechanical systems.
    Tuplin, WA
    PHILOSOPHICAL MAGAZINE, 1938, 26 (178): : 729 - 752
  • [3] METHOD OF DIRECT MOTION SEPARATION IN PROBLEMS OF VIBRATION ACTING ON NONLINEAR MECHANICAL SYSTEMS.
    Blekhman, I.I.
    Mechanics of Solids (English translation of Izvestiya Akademii Nauk SSSR, Mekhanika Tverdogo Tela), 1976, 11 (06):
  • [4] CONTRIBUTION TO RANDOM VIBRATION NUMERICAL SIMULATION AND OPTIMISATION OF NONLINEAR MECHANICAL SYSTEMS
    Saga, Milan
    Vasko, Milan
    Handrik, Marian
    Kopas, Peter
    SCIENTIFIC JOURNAL OF SILESIAN UNIVERSITY OF TECHNOLOGY-SERIES TRANSPORT, 2019, 103 : 143 - 154
  • [5] PERIODIC VIBRATIONS OF NONLINEAR MECHANICAL SYSTEMS.
    Boidziev, G.N.
    1600,
  • [6] Random Vibration of Strongly Nonlinear Systems
    G. Q. Cai
    Y. K. Lin
    Nonlinear Dynamics, 2001, 24 : 3 - 15
  • [7] Random vibration of strongly nonlinear systems
    Cai, GQ
    Lin, YK
    NONLINEAR DYNAMICS, 2001, 24 (01) : 3 - 15
  • [8] APPROXIMATE NONSTATIONARY RANDOM VIBRATION ANALYSIS FOR MDOF SYSTEMS.
    bucher, C.G.
    Journal of Applied Mechanics, Transactions ASME, 1988, 55 (01): : 197 - 200
  • [9] Statistical identification of nonlinear random vibration systems
    Ozaki, T
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1989, 56 (01): : 186 - 191
  • [10] PERTURBATION TECHNIQUES FOR RANDOM VIBRATION OF NONLINEAR SYSTEMS
    CRANDALL, SH
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1963, 35 (11): : 1700 - &