Steckin-Marchaud-type inequalities in connection with Szasz-Durrmeyer operators

被引:0
|
作者
Song, Z. [1 ]
Guo, S. [1 ]
Li, C. [1 ]
机构
[1] Department of Mathematics, Hebei Normal University, Shijiazhuang 050016, China
来源
| 2001年 / Xi'an Jiatong University卷 / 18期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of this paper is to derive the Steckin-Marchand-type inequality in connection with S-D operators by K-functional and obtain inverse result of S-D operators with ωφλ2(f ,t).
引用
收藏
相关论文
共 36 条
  • [1] STECKIN-MARCHAUD-TYPE INEQUALITIES IN CONNECTION WITH BERNSTEIN POLYNOMIALS
    VANWICKEREN, E
    CONSTRUCTIVE APPROXIMATION, 1986, 2 (04) : 331 - 337
  • [2] Steckin-Marchaud-type Inequalities in Connection with Bernstein-Kantorovich Polynomials
    郭顺生
    刘丽霞
    宋占杰
    NortheasternMathematicalJournal, 2000, (03) : 319 - 328
  • [3] 关于Szasz-Durrmeyer算子的Steckin-Marchaud型不等式
    宋占杰
    郭顺生
    李翠香
    工程数学学报, 2001, (01) : 113 - 115
  • [4] On the modification of the Szasz-Durrmeyer operators
    Aral, Ali
    Deniz, Emre
    Gupta, Vijay
    GEORGIAN MATHEMATICAL JOURNAL, 2016, 23 (03) : 323 - 328
  • [5] Szasz-Durrmeyer type operators based on Charlier polynomials
    Kajla, Arun
    Agrawal, P. N.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 268 : 1001 - 1014
  • [6] Approximation by modified Szasz-Durrmeyer operators
    Acar, Tuncer
    Ulusoy, Gulsum
    PERIODICA MATHEMATICA HUNGARICA, 2016, 72 (01) : 64 - 75
  • [7] THE FAMILY OF SZaSZ-DURRMEYER TYPE OPERATORS INVOLVING CHARLIER POLYNOMIALS
    Deo, Naokant
    Pratap, Ram
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2023, 47 (03): : 431 - 443
  • [8] APPROXIMATION BY SZASZ-DURRMEYER TYPE OPERATORS INVOLVING CHARLIER POLYNOMIALS
    Mohiuddine, S. A.
    Kajla, Arun
    Deshwal, Sheetal
    Alotaibi, Abdullah
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 14 (02): : 214 - 231
  • [9] STRONG CONVERSE INEQUALITY FOR SZASZ-DURRMEYER OPERATORS
    LI SONG(Department of Applied Mathematics
    Applied Mathematics:A Journal of Chinese Universities(Series B), 1996, (03) : 361 - 368
  • [10] Szasz-Durrmeyer Operators Based on Dunkl Analogue
    Wafi, Abdul
    Rao, Nadeem
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2018, 12 (07) : 1519 - 1536