Order-reduction method for extraction of eigenvalues of dynamic systems

被引:0
|
作者
Ling-Xi, Qian [1 ]
机构
[1] Dalian Univ of Technology, China
来源
Computers and Structures | 1995年 / 54卷 / 06期
关键词
Aggregation equation - Backward iteration - Order reduction method - Structural elastic buckling problem;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1099 / 1103
相关论文
共 50 条
  • [2] ORDER-REDUCTION METHOD FOR NONLINEAR DYNAMIC-SYSTEMS
    LOHMANN, B
    ELECTRONICS LETTERS, 1992, 28 (07) : 658 - 659
  • [3] Informative Order-Reduction of Underdamped Third-Order Systems
    Albatran, Saher
    Alatoum, Ammar
    Al Khalaileh, Abdel Rahman
    IEEE ACCESS, 2021, 9 (09): : 88512 - 88523
  • [4] Polynomial chaos enhanced by dynamic mode decomposition for order-reduction of dynamic models
    Libero, G.
    Tartakovsky, D. M.
    Ciriello, V.
    ADVANCES IN WATER RESOURCES, 2024, 186
  • [5] Model order-reduction for discrete-time switched linear systems
    Birouche, Abderazik
    Mourllion, Benjamin
    Basset, Michel
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2012, 43 (09) : 1753 - 1763
  • [6] H2 order-reduction for bilinear systems based on Grassmann manifold
    Xu, Kang-Li
    Jiang, Yao-Lin
    Yang, Zhi-Xia
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2015, 352 (10): : 4467 - 4479
  • [7] The Lagrangian Order-Reduction Theorem in Field Theories
    Olga Rossi
    Communications in Mathematical Physics, 2018, 362 : 107 - 128
  • [8] Order-reduction abstractions for safety verification of high-dimensional linear systems
    Hoang-Dung Tran
    Luan Viet Nguyen
    Xiang, Weiming
    Johnson, Taylor T.
    DISCRETE EVENT DYNAMIC SYSTEMS-THEORY AND APPLICATIONS, 2017, 27 (02): : 443 - 461
  • [9] Order-reduction abstractions for safety verification of high-dimensional linear systems
    Hoang-Dung Tran
    Luan Viet Nguyen
    Weiming Xiang
    Taylor T. Johnson
    Discrete Event Dynamic Systems, 2017, 27 : 443 - 461
  • [10] The Lagrangian Order-Reduction Theorem in Field Theories
    Rossi, Olga
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 362 (01) : 107 - 128