Optimizing parameters in investment formulation of drainage pipe using genetic algorithms

被引:0
|
作者
Yi, Xue-Nong [1 ]
Liu, Sui-Qing [1 ]
Xu, Feng [2 ]
机构
[1] Sch. of Environ. Sci. and Eng., Tongji Univ., Shanghai 200092, China
[2] Planning Design and Survey Inst., Laiwu 271100, China
来源
关键词
Drainage - Genetic algorithms - Investments - Mathematical models - Optimization;
D O I
暂无
中图分类号
学科分类号
摘要
It is difficult to optimize the parameters in investment formulation directly with conventional methods because there are seven parameters in it. With minimizing objective function, the mean square deviation of investment formulation and the parameters are optimized directly by the application of genetic algorithms (GAs). It can overcome the trouble of application of pluri-derivative and high order equations in solving the investment formulation by using global random search theory and applying the objective function information directly in GAs. The methods can reduce the mean square deviation and optimize the parameters of investment formulation effectively. This is a part of optimal design for drainage systems.
引用
收藏
页码:20 / 23
相关论文
共 50 条
  • [1] Optimizing Parameters of an Optical Link by Using Genetic Algorithms
    Hakim A.
    Smail B.
    Hakim, Aoudia (hakim.aoudia@univ-bejaia.dz), 1600, Walter de Gruyter GmbH (39): : 101 - 107
  • [2] Optimizing of active filter parameters by using genetic algorithms
    Ghandchi, M.
    Hosseini, S.H.
    Ghaemi, Sehraneh
    WSEAS Transactions on Mathematics, 2006, 5 (07) : 886 - 891
  • [3] Exploring and Optimizing Dynamic Neural Fields Parameters Using Genetic Algorithms
    Quinton, Jean-Charles
    2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,
  • [4] Optimizing design parameters of fuzzy model based COCOMO using genetic algorithms
    Chhabra S.
    Singh H.
    International Journal of Information Technology, 2020, 12 (4) : 1259 - 1269
  • [5] Optimizing cutting parameters in process planning of prismatic parts by using genetic algorithms
    Dereli, T
    Feliz, IH
    Baykasoglu, A
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2001, 39 (15) : 3303 - 3328
  • [6] Investment decisions using genetic algorithms
    Kassicieh, SK
    Paez, TL
    Vora, G
    THIRTIETH HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES, VOL 5: ADVANCED TECHNOLOGY, 1997, : 484 - 490
  • [7] Optimizing readability using genetic algorithms
    Martinez-Gil, Jorge
    KNOWLEDGE-BASED SYSTEMS, 2024, 284
  • [8] Optimizing the Parameters of a Biodynamic Responses to Vibration Model using Particle Swarm and Genetic Algorithms
    Nawayseh, Naser
    Jarndal, Anwar
    Hamdan, Sadeque
    2017 7TH INTERNATIONAL CONFERENCE ON MODELING, SIMULATION, AND APPLIED OPTIMIZATION (ICMSAO), 2017,
  • [9] Optimizing a pifa using a genetic algorithms approach
    Kouveliotis, N. K.
    Panagiotou, S. C.
    Varlamos, P. K.
    Dimousios, T. D.
    Capsalis, C. N.
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2008, 22 (2-3) : 453 - 461
  • [10] Optimizing doped libraries by using genetic algorithms
    Dirk Tomandl
    Andreas Schober
    Andreas Schwienhorst
    Journal of Computer-Aided Molecular Design, 1997, 11 : 29 - 38