APPROXIMATION PROCEDURE FOR BOUNDARY-VALUE PROBLEMS OF HEAT CONDUCTION.

被引:0
|
作者
Guzii, V.G. [1 ]
机构
[1] Novocherkassk Polytechnic Inst, USSR, Novocherkassk Polytechnic Inst, USSR
关键词
D O I
暂无
中图分类号
学科分类号
摘要
7
引用
收藏
页码:992 / 998
相关论文
共 50 条
  • [1] APPLICATION OF THE IMPROVED INTEGRAL METHOD OF LINES TO BOUNDARY-VALUE PROBLEMS IN HEAT CONDUCTION.
    Ryndyuk, V.I.
    Chernyshov, A.D.
    Journal of Engineering Physics (English Translation of Inzhenerno-Fizicheskii Zhurnal), 1987, 52 (02): : 227 - 229
  • [2] On an approach to the approximation of a solution of problems for the heat-conduction equation without boundary-value or initial conditions
    Demchenko L.I.
    Demchenko V.F.
    Journal of Mathematical Sciences, 2000, 102 (1) : 3763 - 3766
  • [3] NONLINEAR INITIAL BOUNDARY-VALUE PROBLEMS OF HEAT-CONDUCTION AND DIFFUSION
    ZISCHKA, KA
    CHOW, PS
    SIAM REVIEW, 1974, 16 (01) : 17 - 35
  • [4] Modeling of Boundary-Value Problems of Heat Conduction for Multilayered Hollow Cylinder
    Tatsiy, Roman
    Stasiuk, Marta
    Pazen, Oleg
    Vovk, Sergiy
    2018 INTERNATIONAL SCIENTIFIC-PRACTICAL CONFERENCE: PROBLEMS OF INFOCOMMUNICATIONS SCIENCE AND TECHNOLOGY (PIC S&T), 2018, : 21 - 25
  • [5] SOLUTION OF STATIONARY NONLINEAR BOUNDARY-VALUE PROBLEMS OF HEAT-CONDUCTION
    RVACHOV, VL
    SLESARENKO, AP
    SAFONOV, MO
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1974, (11): : 1015 - 1021
  • [6] APPROXIMATION PROPERTIES OF MULTIPOINT BOUNDARY-VALUE PROBLEMS
    Masliuk, Hanna
    Pelekhata, Olha
    Soldatov, Vitalii
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2020, 26 (02): : 119 - 125
  • [7] VARIATIONAL THEORY AND APPROXIMATION OF BOUNDARY-VALUE PROBLEMS
    SHOWALTER, RE
    LECTURE NOTES IN MATHEMATICS, 1985, 1129 : 140 - 179
  • [8] On Discrete Boundary-Value Problems and Their Approximation Properties
    Vasilyev V.B.
    Tarasova O.A.
    Journal of Mathematical Sciences, 2023, 272 (5) : 634 - 641
  • [9] Reduction of a class on inverse heat-conduction problems to direct initial/boundary-value problems
    Borukhov V.T.
    Vabishchevich P.N.
    Korzyuk V.I.
    Inzhenerno-Fizicheskii Zhurnal, 2000, 73 (04): : 744 - 747
  • [10] A NOTE ON UNIQUENESS PROOFS FOR BOUNDARY-VALUE PROBLEMS IN POTENTIAL THEORY AND STEADY HEAT CONDUCTION
    RAYNER, ME
    QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 1953, 6 (04): : 385 - 390