Crack growth rates during creep, fatigue and creep-fatigue in an austenitic feature weld specimen

被引:0
|
作者
Gladwin, D.N. [1 ]
Miller, D.A. [1 ]
Priest, R.H. [1 ]
机构
[1] CEGB Operational Engineering Div, United Kingdom
关键词
Fracture Mechanics--Mathematical Models - Materials Testing--Creep - Mathematical Techniques--Finite Element Method - Stresses--Analysis;
D O I
暂无
中图分类号
学科分类号
摘要
Static creep crack growth tests and displacement controlled fatigue and creep-fatigue crack growth tests have been performed on austenitic feature weld specimens at 650°C. The creep-fatigue tests incorporated hold times of up to 96 h. During these tests, crack growth appeared to comprise cyclic and dwell components. Cyclic crack growth components were characterised by the fracture mechanics parameter K whilst creep crack growth contributions were correlated with C*. In roder to determine K and C* for the non-standard feature weld specimen, elastic and elastic-plastic creep finite element analyses were conducted. Good correspondence is shown between the feature weld data and comparable data from compact tension specimen tests on similar materials. Equations obtained from the compact tension specimen results, which describe total crack growth rates as the sum of the cyclic and dwell contributions, are shown to adequately describe the features test results also. Furthermore, it is demonstrated that a reference stress approach can be used to estimate C* for the features specimens.
引用
收藏
页码:187 / 200
相关论文
共 50 条
  • [1] CRACK-GROWTH RATES DURING CREEP, FATIGUE AND CREEP-FATIGUE IN AN AUSTENITIC FEATURE WELD SPECIMEN
    GLADWIN, DN
    MILLER, DA
    PRIEST, RH
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 1989, 12 (03) : 187 - 200
  • [2] Creep and creep-fatigue crack growth
    Saxena, Ashok
    INTERNATIONAL JOURNAL OF FRACTURE, 2015, 191 (1-2) : 31 - 51
  • [3] DESIGN AND ASSESSMENT FOR CREEP-FATIGUE AND CREEP-FATIGUE CRACK GROWTH
    Ainsworth, Robert A.
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, 2016, VOL 1B, 2017,
  • [4] Materials and Fabrication Creep and Creep-Fatigue Crack Growth
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE 2010, VOL 6, PTS A AND B, 2010, : 311 - 311
  • [5] Models for Small Crack Growth under Creep-Fatigue in Austenitic Steels
    Skelton, R. P.
    CREEP-FATIGUE INTERACTIONS: TEST METHODS AND MODELS, 2011, 1539 : 142 - 177
  • [6] METHODS FOR DETERMINING CREEP DAMAGE AND CREEP-FATIGUE CRACK GROWTH INCUBATION IN AUSTENITIC STAINLESS STEEL
    Webster, George A.
    Dean, David W.
    Spindler, Michael W.
    Smith, N. Godfrey
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, VOL 6, PTS A AND B, 2010, : 671 - 683
  • [7] A new creep-fatigue crack growth model and a correlation of the creep-fatigue crack growth rate with unified constraint parameter
    Lu, Rong-Sheng
    Tan, Jian-Ping
    Yang, Jie
    Wang, Ji
    Shlyannikov, Valery
    Wang, Run-Zi
    Zhang, Xian-Cheng
    Tu, Shan -Tung
    INTERNATIONAL JOURNAL OF FATIGUE, 2023, 166
  • [8] CREEP-FATIGUE LIFE PREDICTION IN TERMS OF NUCLEATION AND GROWTH OF FATIGUE CRACK AND CREEP CAVITIES
    NAM, SW
    HONG, JW
    RIE, KT
    METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1988, 19 (01): : 121 - 127
  • [9] A single edge notch specimen for fatigue, creep-fatigue and thermo-mechanical fatigue crack growth testing
    Narasimhachary, Santosh B.
    Bhachu, Kanwardeep S.
    Shinde, Sachin R.
    Gravett, Phillip W.
    Newman, James C., Jr.
    ENGINEERING FRACTURE MECHANICS, 2018, 199 : 760 - 772
  • [10] A creep stress intensity factor approach to creep-fatigue crack growth
    Shlyannikov, V. N.
    Tumanov, A. V.
    Boychenko, N. V.
    ENGINEERING FRACTURE MECHANICS, 2015, 142 : 201 - 219