Simpler approach to Penrose tiling with implications for quasicrystal formation

被引:0
|
作者
机构
来源
Nature | / 6590卷 / 431期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] A simpler approach to Penrose tiling with implications for quasicrystal formation
    Steinhardt, PJ
    Jeong, HC
    NATURE, 1996, 382 (6590) : 431 - 433
  • [2] Spin waves in planar quasicrystal of Penrose tiling
    Rychly, J.
    Mieszczak, S.
    Klos, J. W.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2018, 450 : 18 - 23
  • [3] Generalized Penrose tiling as a quasilattice for decagonal quasicrystal structure analysis
    Chodyn, Maciej
    Kuczera, Pawel
    Wolny, Janusz
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2015, 71 : 161 - 168
  • [4] Application of the Generalized Penrose Tiling to the structure refinement of AICuRh decagonal quasicrystal
    Strzalka, Radoslaw
    Buganski, Lreneusz
    Chodyn, Maciej
    Wolny, Janusz
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2018, 74 : E98 - E98
  • [5] Physical space structure refinement of decagonal quasicrystal in rhombic Penrose tiling model
    Wolny, Janusz
    Kozakowski, Bartlomej
    Kuczera, Pawel
    Takakura, Hiroyuki
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2008, 223 (11-12): : 847 - 850
  • [6] Penrose tiling
    Glassner, A
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 1998, 18 (04) : 78 - 86
  • [7] Analysis of an Endlessly Single-Mode Penrose-Tiling Photonic Quasicrystal Fiber
    Bahrampour, A.
    Iadicicco, A.
    Foomezhi, E.
    Momeni, Sh
    Bhrampour, A. R.
    2014 THIRD MEDITERRANEAN PHOTONICS CONFERENCE, 2014,
  • [8] Optimizing the Number of Components in a Molecular Quasicrystal: A Three-Component Material Based on the Penrose Tiling
    Zhou, Zhongfu
    Harris, Kenneth D. M.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (42): : 16186 - 16188
  • [9] Al4Mn QUASICRYSTAL ATOMIC STRUCTURE, DIFFRACTION DATA AND PENROSE TILING.
    Audier, M.
    Guyot, P.
    Philosophical Magazine B: Physics of Condensed Matter; Electronic, Optical and Magnetic Properties, 1986, 53 (01):
  • [10] ADDITIONS TO PENROSE NONPERIODIC TILING: A SIMPLE METHODOLOGICAL APPROACH
    Dewar, Robert Earl
    SYMMETRY-CULTURE AND SCIENCE, 2022, 33 (01): : 5 - 24