Encoding method for bidirectional associative memory based on perceptron learning rule

被引:0
|
作者
Chinese Acad of Sciences, Beijing, China [1 ]
机构
来源
Chinese Journal of Electronics | 1998年 / 7卷 / 01期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
7
引用
收藏
页码:49 / 53
相关论文
共 50 条
  • [1] High performance learning rule for bidirectional associative memory
    Leung, Chi Sing
    Chan, Lai Wan
    Sum, John Pui Fai
    Neural Network World, 1997, 7 (03): : 325 - 334
  • [2] ADAPTATION OF THE RELAXATION METHOD FOR LEARNING IN BIDIRECTIONAL ASSOCIATIVE MEMORY
    OH, H
    KOTHARI, SC
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1994, 5 (04): : 576 - 583
  • [3] Encoding Sparse Features in a Bidirectional Associative Memory
    Berberian, Nareg
    Helie, Sebastien
    Aamir, Zoya
    Chartier, Sylvain
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 5119 - 5126
  • [4] Experimental study of Perceptron-type local learning rule for Hopfield associative memory
    Jagota, A
    Mandziuk, J
    INFORMATION SCIENCES, 1998, 111 (1-4) : 65 - 81
  • [5] Experimental study of Perceptron-type local learning rule for Hopfield associative memory
    Univ of California, Berkeley, United States
    Inf Sci, 1-4 (65-81):
  • [6] Associative memory design via perceptron learning
    Liu, DR
    Lu, ZJ
    1997 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, 1997, : 1172 - 1177
  • [7] ENCODING METHOD FOR BIDIRECTIONAL ASSOCIATIVE MEMORY USING PROJECTION ON CONVEX-SETS
    LEUNG, CS
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1993, 4 (05): : 879 - 881
  • [8] BETTER LEARNING FOR BIDIRECTIONAL ASSOCIATIVE MEMORY
    ZHUANG, XH
    HUANG, Y
    CHEN, SS
    NEURAL NETWORKS, 1993, 6 (08) : 1131 - 1146
  • [9] QUICK LEARNING FOR BIDIRECTIONAL ASSOCIATIVE MEMORY
    HATTORI, M
    HAGIWARA, M
    NAKAGAWA, M
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 1994, E77D (04) : 385 - 392
  • [10] Intersection learning for bidirectional associative memory
    Hattori, M
    Hagiwara, M
    ICNN - 1996 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS. 1-4, 1996, : 555 - 560