Generalized Cramer's rule and characterization of fixed modes

被引:0
|
作者
Gong, Z. [1 ]
Aldeen, M. [1 ]
机构
[1] Nanyang Technological Univ, Singapore, Singapore
来源
Control, theory and advanced technology | 1995年 / 10卷 / 4 pt 4期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
11
引用
收藏
页码:1833 / 1841
相关论文
共 50 条
  • [1] A generalized Cramer's rule and characterization of fixed modes
    Gong, Z
    Aldeen, M
    CONTROL-THEORY AND ADVANCED TECHNOLOGY, 1995, 10 (04): : 1833 - 1841
  • [2] A note on a generalized Cramer's rule
    Gong, ZM
    Aldeen, M
    Elsner, L
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 340 (1-3) : 253 - 254
  • [3] A characterization of bases of tropical kernels in terms of Cramer's rule
    Nishida, Yuki
    Watanabe, Sennosuke
    Watanabe, Yoshihide
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 601 : 301 - 310
  • [4] A characterization of bases of tropical kernels in terms of Cramer's rule
    Nishida, Yuki
    Watanabe, Sennosuke
    Watanabe, Yoshihide
    Linear Algebra and Its Applications, 2021, 601 : 301 - 310
  • [5] An earlier date for "Cramer's Rule"
    Hedman, BA
    HISTORIA MATHEMATICA, 1999, 26 (04) : 365 - 368
  • [6] A geometric interpretation of Cramer's rule
    Hu, Hailiang
    MATHEMATICAL GAZETTE, 2022, 106 (565): : 124 - 125
  • [7] A GENERALIZED MFD CRITERION FOR FIXED MODES
    XU, XM
    XI, YG
    ZHANG, ZJ
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1988, 33 (10) : 986 - 988
  • [8] Cramer's rule for non-square matrices
    Lakshminarayanan, S
    Shah, SL
    Nandakumar, K
    AMERICAN MATHEMATICAL MONTHLY, 1999, 106 (09): : 865 - 865
  • [9] Cramer's rule for some quaternion matrix equations
    Kyrchei, I. I.
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (05) : 2024 - 2030
  • [10] Proof of Cramer's rule with Dirac delta function
    Ee, June-Haak
    Lee, Jungil
    Yu, Chaehyun
    EUROPEAN JOURNAL OF PHYSICS, 2020, 41 (06)