Trellis complexity versus the coding gain of lattices II

被引:0
|
作者
AT&T Lab, Murray Hill, United States [1 ]
机构
来源
IEEE Trans Inf Theory | / 6 pt 1卷 / 1808-1816期
关键词
Manuscript received December 9; 1994; revised December 14; 1995. This work was supported in part by the National Sciences and Engineering Research Council of Canada under Grant A7382. The material in this paper was presented in part at the IEEE International Symposium on Information Theory; Whistler; BC; September 1995. V. Tarokh was with the Department of Electrical and Computer Engineering; University of Waterloo; Waterloo; Ont; N2L; 3G1; Canada; and with the Coordinated Science Laboratory; University of Illinois; Urbana; Illinois 61801 USA. He is now with AT&T Laboratories; Murray Hill; NJ 07974 USA. I. F. Blake is with the Department of Electrical and Computer Engineering; Canada. Publisher Item Identifier S 0018-9448(96)04822-5;
D O I
暂无
中图分类号
学科分类号
摘要
26
引用
收藏
相关论文
共 50 条
  • [1] Trellis complexity versus the coding gain of lattices I
    Tarokh, Vahid
    Blake, Ian F.
    IEEE Transactions on Information Theory, 1996, 42 (6 pt 1): : 1796 - 1807
  • [2] Trellis complexity versus the coding gain of lattices .1.
    Tarokh, V
    Blake, IF
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (06) : 1796 - 1807
  • [3] Trellis complexity and minimal trellis diagrams of lattices
    Banihashemi, AH
    Blake, IF
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (05) : 1829 - 1847
  • [4] Upper bounds on trellis complexity of lattices
    Tarokh, V
    Vardy, A
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (04) : 1294 - 1300
  • [5] On the trellis complexity of root lattices and their duals
    Banihashemi, AH
    Blake, IF
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (06) : 2168 - 2172
  • [6] DENSITY LENGTH PROFILES AND TRELLIS COMPLEXITY OF LATTICES
    FORNEY, GD
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (06) : 1753 - 1772
  • [7] Low Complexity Trellis-Coded Quantization in Versatile Video Coding
    Wang, Meng
    Wang, Shiqi
    Li, Junru
    Zhang, Li
    Wang, Yue
    Ma, Siwei
    Kwong, Sam
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 2378 - 2393
  • [8] THE COMPLEXITY OF QUASIVARIETY LATTICES. II
    Schwidefsky, M. V.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2023, 20 (01): : 501 - 513
  • [9] On linear complexity of binary lattices, II
    Gyarmati, Katalin
    Mauduit, Christian
    Sarkoezy, Andras
    RAMANUJAN JOURNAL, 2014, 34 (02): : 237 - 263
  • [10] On linear complexity of binary lattices, II
    Katalin Gyarmati
    Christian Mauduit
    András Sárközy
    The Ramanujan Journal, 2014, 34 : 237 - 263