A space-time approach for the simulation of brittle fracture with phase-field models in elastodynamics

被引:0
|
作者
Feutang, F. K. [1 ]
Lejeunes, S. [1 ]
Eyheramendy, D. [1 ]
机构
[1] Aix Marseille Univ, CNRS, Cent Marseille, LMA,UMR 7031, Marseille, France
关键词
IGA; Phase-field; Space-time; Time discontinuous Galerkin; Damage; Fragmentation; ABAQUS IMPLEMENTATION; ISOGEOMETRIC ANALYSIS; DYNAMIC FRACTURE; FINITE-ELEMENTS; FORMULATION; PRINCIPLE; GRADIENT; DAMAGE;
D O I
10.1016/j.compstruc.2024.107616
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A space-time approach is proposed to simulate the propagation of brittle cracks in an isotropic and elastic solid in dynamics. We adopt the so called phase-field description of crack that is based on a variational representation of fracture mechanics. Due to this variational structure, the crack initiation and propagation can be then described thanks to a well chosen potential. In this approach, we propose to consider a space-time potential to derive the appropriate Euler equations on the space-time domain. A time discontinuous Galerkin approach is used and adapted to damage and elastodynamics such as to be able to account of time singularities in the considered fields. This approach follows a previous work done on elastodynamics (see [47]) in which we have proposed a stabilized formulation with the help of least square terms. The proposed space-time potential is discretized with either standard finite-elements (ST-FE) or isogeometric analysis (ST-IGA). We apply this approach to different numerical examples including dynamic fragmentation.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Phase-field models for brittle and cohesive fracture
    Vignollet, Julien
    May, Stefan
    de Borst, Rene
    Verhoosel, Clemens V.
    MECCANICA, 2014, 49 (11) : 2587 - 2601
  • [2] A STUDY ON PHASE-FIELD MODELS FOR BRITTLE FRACTURE
    Zhang, Fei
    Huang, Weizhang
    LI, Xianping
    Zhang, Shicheng
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2022, 19 (06) : 793 - 821
  • [3] Phase-field models for brittle and cohesive fracture
    Julien Vignollet
    Stefan May
    René de Borst
    Clemens V. Verhoosel
    Meccanica, 2014, 49 : 2587 - 2601
  • [4] An assessment of anisotropic phase-field models of brittle fracture
    Scherer, Jean-Michel
    Brach, Stella
    Bleyer, Jeremy
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 395
  • [5] A convergence study of phase-field models for brittle fracture
    Linse, Thomas
    Hennig, Paul
    Kaestner, Markus
    de Borst, Rene
    ENGINEERING FRACTURE MECHANICS, 2017, 184 : 307 - 318
  • [6] On penalization in variational phase-field models of brittle fracture
    Gerasimov, T.
    De Lorenzis, L.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 354 : 990 - 1026
  • [7] Implementation aspects of a phase-field approach for brittle fracture
    Huynh, G. D.
    Zhuang, X.
    Nguyen-Xuan, H.
    FRONTIERS OF STRUCTURAL AND CIVIL ENGINEERING, 2019, 13 (02) : 417 - 428
  • [8] Implementation aspects of a phase-field approach for brittle fracture
    G. D. Huynh
    X. Zhuang
    H. Nguyen-Xuan
    Frontiers of Structural and Civil Engineering, 2019, 13 : 417 - 428
  • [9] Revisiting nucleation in the phase-field approach to brittle fracture
    Kumar, Aditya
    Bourdin, Blaise
    Francfort, Gilles A.
    Lopez-Pamies, Oscar
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2020, 142
  • [10] Evaluation of variational phase-field models for dynamic brittle fracture
    Mandal, Tushar Kanti
    Vinh Phu Nguyen
    Wu, Jian-Ying
    ENGINEERING FRACTURE MECHANICS, 2020, 235