Pattern dynamics of the nonreciprocal Swift-Hohenberg model

被引:0
|
作者
Tateyama, Yuta [1 ]
Ito, Hiroaki [1 ]
Komura, Shigeyuki [2 ,3 ,4 ]
Kitahata, Hiroyuki [1 ]
机构
[1] Chiba Univ, Grad Sch Sci, Dept Phys, Chiba 2638522, Japan
[2] Univ Chinese Acad Sci, Wenzhou Inst, Wenzhou 325001, Zhejiang, Peoples R China
[3] Oujiang Lab, Wenzhou 325000, Zhejiang, Peoples R China
[4] Tokyo Metropolitan Univ, Grad Sch Sci, Dept Chem, Tokyo 1920397, Japan
基金
日本学术振兴会; 日本科学技术振兴机构; 中国国家自然科学基金;
关键词
Bifurcation; (mathematics); -; Chirality;
D O I
10.1103/PhysRevE.110.054209
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the pattern dynamics of the one-dimensional nonreciprocal Swift-Hohenberg model. Characteristic spatiotemporal patterns such as disordered, aligned, swap, chiral-swap, and chiral phases emerge depending on the parameters. We classify the characteristic spatiotemporal patterns obtained in numerical simulation by focusing on the spatiotemporal Fourier spectrum of the order parameters. We derive a reduced dynamical system by using the spatial Fourier series expansion. We analyze the bifurcation structure around the fixed points corresponding to the aligned and chiral phases, and explain the transitions between them. The disordered phase is destabilized either to the aligned phase by the Turing bifurcation or to the chiral phase by the wave bifurcation, while the aligned phase and the chiral phase are connected by the pitchfork bifurcation.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] PATTERN SELECTION IN THE GENERALIZED SWIFT-HOHENBERG MODEL
    HILALI, MF
    METENS, S
    BORCKMANS, P
    DEWEL, G
    PHYSICAL REVIEW E, 1995, 51 (03): : 2046 - 2052
  • [2] Swift-Hohenberg model for magnetoconvection
    Cox, SM
    Matthews, PC
    Pollicott, SL
    PHYSICAL REVIEW E, 2004, 69 (06):
  • [3] DYNAMIC PATTERN FORMATION IN SWIFT-HOHENBERG EQUATIONS
    Hoang, Tung
    Hwang, Hyung Ju
    QUARTERLY OF APPLIED MATHEMATICS, 2011, 69 (03) : 603 - 612
  • [4] Pattern selection of solutions of the Swift-Hohenberg equation
    Peletier, LA
    Rottschäfer, V
    PHYSICA D-NONLINEAR PHENOMENA, 2004, 194 (1-2) : 95 - 126
  • [5] Gradient pattern analysis of Swift-Hohenberg dynamics: phase disorder characterization
    Rosa, RR
    Pontes, J
    Christov, CI
    Ramos, FM
    Neto, CR
    Rempel, EL
    Walgraef, D
    PHYSICA A, 2000, 283 (1-2): : 156 - 159
  • [6] Dynamics of phase domains in the Swift-Hohenberg equation
    Staliunas, K
    Sanchez-Morcillo, VJ
    PHYSICS LETTERS A, 1998, 241 (1-2) : 28 - 34
  • [7] Domain dynamics in the anisotropic Swift-Hohenberg equation
    Ouchi, K
    Fujisaka, H
    PHYSICAL REVIEW E, 2004, 70 (03):
  • [8] Ergodic dynamics of the stochastic Swift-Hohenberg system
    Wang, W
    Sun, JH
    Duan, JQ
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2005, 6 (02) : 273 - 295
  • [9] Dynamics of phase domains in the Swift-Hohenberg equation
    Staliunas, K.
    Sanchez-Morcillo, V. J.
    Physics Letters. Section A: General, Atomic and Solid State Physics, 241 (01):
  • [10] Herringbone pattern for an anisotropic complex Swift-Hohenberg equation
    Sakaguchi, H
    PHYSICAL REVIEW E, 1998, 58 (06): : 8021 - 8023