3D Printed Carbon Nanotube/Phenolic Composites for Thermal Dissipation and Electromagnetic Interference Shielding

被引:0
|
作者
Tran, Thang Q. [1 ,2 ]
Deshpande, Sayyam [1 ]
Dasari, Smita Shivraj [1 ]
Arole, Kailash [3 ]
Johnson, Denis [1 ]
Zhang, Yufan [1 ]
Harkin, Ethan M. [1 ]
Djire, Abdoulaye [1 ,3 ]
Seet, Hang Li [2 ]
Nai, Sharon Mui Ling [2 ]
Green, Micah J. [1 ,3 ]
机构
[1] Texas A&M Univ, Artie McFerrin Dept Chem Engn, College Stn, TX 77843 USA
[2] ASTAR, Singapore Inst Mfg Technol SIMTech, Singapore 636732, Singapore
[3] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA
关键词
phenolic resin; carbon nanotube; direct inkwriting; electromagnetic interference shielding; heat dissipation; NANOCOMPOSITES;
D O I
10.1021/acsami.4c17115
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Here we demonstrate direct ink write (DIW) additive manufacturing of carbon nanotube (CNT)/phenolic composites with heat dissipation and excellent electromagnetic interference (EMI) shielding capabilities without curing-induced deformation. Such polymer composites are valuable for protecting electronic devices from overheating and electromagnetic interference. CNTs were used as a multifunctional nanofiller to improve electrical and thermal conductivity, printability, stability during curing, and EMI shielding performance of CNT/phenolic composites. Different CNT loadings, curing conditions, substrate types, and sample sizes were explored to minimize the negative effects of the byproducts released from the cross-linking reactions of phenolic on the printed shape integrity. At a CNT loading of 10 wt %, a slow curing cycle enables us to cure printed thin-walled CNT/phenolic composites with highly dense structures; such structures are impossible without a filler. Moreover, the electrical conductivity of the printed 10 wt % CNT/phenolic composites increased by orders of magnitude due to CNT percolation, while an improvement of 92% in thermal conductivity was achieved over the neat phenolic. EMI shielding effectiveness of the printed CNT/phenolic composites reaches 41.6 dB at the same CNT loading, offering a shielding efficiency of 99.99%. The results indicate that high CNT loading, a slow curing cycle, flexible substrates, and one thin sample dimension are the key factors to produce high-performance 3D-printed CNT/phenolic composites to address the overheating and EMI issues of modern electronic devices.
引用
收藏
页码:69929 / 69939
页数:11
相关论文
共 50 条
  • [1] Electromagnetic interference shielding performance of carbon nanostructure reinforced, 3D printed polymer composites
    Pawan Verma
    Taruna Bansala
    Sampat Singh Chauhan
    Devendra Kumar
    Suleyman Deveci
    S. Kumar
    Journal of Materials Science, 2021, 56 : 11769 - 11788
  • [2] Electromagnetic interference shielding performance of carbon nanostructure reinforced, 3D printed polymer composites
    Verma, Pawan
    Bansala, Taruna
    Chauhan, Sampat Singh
    Kumar, Devendra
    Deveci, Suleyman
    Kumar, S.
    JOURNAL OF MATERIALS SCIENCE, 2021, 56 (20) : 11769 - 11788
  • [3] 3D-printed carbon nanotubes/epoxy composites for efficient electromagnetic interference shielding
    Wang Y.
    Fan Z.
    Zhao J.
    Jia L.
    Xu L.
    Yan D.
    Wang S.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2019, 36 (01): : 1 - 6
  • [4] 3D Printed Polyimide Nanocomposite Aerogels for Electromagnetic Interference Shielding and Thermal Management
    Wu, Tingting
    Ganobjak, Michal
    Siqueira, Gilberto
    Zeng, Zhihui
    Li, Mengmeng
    Filimonova, Ekaterina
    Saghamanesh, Somayeh
    Bonnin, Anne
    Sivaraman, Deeptanshu
    Yip, Joshua
    Li, Lei
    Wu, Hui
    Nystrom, Gustav
    Malfait, Wim J.
    Zhao, Shanyu
    ADVANCED MATERIALS TECHNOLOGIES, 2023, 8 (14):
  • [5] Electromagnetic shielding effectiveness of 3D printed polymer composites
    Viskadourakis, Z.
    Vasilopoulos, K. C.
    Economou, E. N.
    Soukoulis, C. M.
    Kenanakis, G.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2017, 123 (12):
  • [6] Electromagnetic shielding effectiveness of 3D printed polymer composites
    Z. Viskadourakis
    K. C. Vasilopoulos
    E. N. Economou
    C. M. Soukoulis
    G. Kenanakis
    Applied Physics A, 2017, 123
  • [7] Investigation of electrical, electromagnetic interference shielding and tensile properties of 3D-printed acrylonitrile butadiene styrene/carbon nanotube composites
    Maleki, Amir Hossein
    Zolfaghari, Abbas
    JOURNAL OF THERMOPLASTIC COMPOSITE MATERIALS, 2024, 37 (07) : 2409 - 2424
  • [8] Electromagnetic interference shielding properties of carbon nanotube buckypaper composites
    Park, Jin Gyu
    Louis, Jeffrey
    Cheng, Qunfeng
    Bao, Jianwen
    Smithyman, Jesse
    Liang, Richard
    Wang, Ben
    Zhang, Chuck
    Brooks, James S.
    Kramer, Leslie
    Fanchasis, Percy
    Dorough, David
    NANOTECHNOLOGY, 2009, 20 (41)
  • [9] Multi-walled carbon nanotube grafted 3D spacer multi-scale composites for electromagnetic interference shielding
    Yildirim, Ferhat
    Kabakci, Elif
    Sas, Hatice S.
    Eskizeybek, Volkan
    POLYMER COMPOSITES, 2022, 43 (08) : 5690 - 5703
  • [10] Flexible thermoplastic polyurethane-carbon nanotube composites for electromagnetic interference shielding and thermal management
    Shin, Beomsu
    Mondal, Subhadip
    Lee, Minkyu
    Kim, Suhyun
    Huh, Yang-Il
    Nah, Changwoon
    CHEMICAL ENGINEERING JOURNAL, 2021, 418