Modeling of hydrogen liquefaction process parameters using advanced artificial intelligence technique

被引:0
|
作者
El Hadj, A. Abdallah [1 ,2 ]
Yahia, A. Ait [1 ]
Hamza, K. [2 ]
Laidi, M. [2 ]
Hanini, S. [2 ]
机构
[1] Univ Blida, Fac Sci, Dept Chem, Rd Somaa, Blida, Algeria
[2] Univ MEDEA, Lab Biomateriaux & Phenome Transport LBMPT, Medea, Algeria
关键词
Modeling; Hydrogen liquefaction process; ANFIS; PSO; AI-PCSAFT; NEURAL-NETWORK; ADSORPTION;
D O I
10.1016/j.compchemeng.2024.108950
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The main subject of this work is the application of advanced artificial intelligence (AI) techniques to accurately predict the parameters of the hydrogen liquefaction process. This study employs a comparative analysis of the most reliable AI techniques: Artificial Neural Networks (ANNs), Adaptive Neuro-Fuzzy Inference Systems (ANFIS), support vector machines (SVM), perturbed chain statistical associated fluid theory (PCSAFT) equation of state and Hybrid technique based on the combination of ANN model and perturbed chain statistical associated fluid theory (AI-PCSAFT). The training and validation strategy focuses on using a validation agreement vector, determined through linear regression analysis of the predicted versus reference outputs, as an indication of the predictive ability of the studied models. A dataset collected from scientific papers containing hydrogen liquefaction process data was utilized in the modeling process. The modeling strategy is performed using the temperature (T), pressure (P), and mass flow rate (m) as input parameters and the stream energy (E) as output parameters. The results show high predictability of the optimized ANFIS model followed by AI-PACSAFT model compared to ANN, SVM models and PCSAFT equation of state with coefficient of correlation (R) and absolute relative deviation (AARD) equal to 0.9988 and 0.98% respectively.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Generative Process Planning Using Heuristic Artificial Intelligence Technique with CAD Modeling
    Satchidanandam, Anand
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DESIGN AND INTELLIGENT APPLICATIONS 2012 (INDIA 2012), 2012, 132 : 747 - 754
  • [2] Metal cutting process parameters modeling: an artificial intelligence approach
    Tanikic, Dejan
    Manic, Miodrag
    Radenkovic, Goran
    Mancic, Dragan
    JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH, 2009, 68 (06): : 530 - 539
  • [3] Evaluation of piezoelectric resonator parameters using an artificial intelligence technique
    Ruiz, A
    San Emeterio, JL
    Ramos, A
    INTEGRATED FERROELECTRICS, 2004, 63 : 137 - 141
  • [4] Predicting Indian Ocean Cyclone Parameters Using an Artificial Intelligence Technique
    Chand, C. Purna
    Ali, M. M.
    Himasri, Borra
    Bourassa, Mark A.
    Zheng, Yangxing
    ATMOSPHERE, 2022, 13 (07)
  • [5] The use of artificial intelligence technique for the optimisation of process parameters used in the continuous casting of steel
    Santos, CA
    Spim, JA
    Ierardi, MCF
    Garcia, A
    APPLIED MATHEMATICAL MODELLING, 2002, 26 (11) : 1077 - 1092
  • [6] Modeling and optimization of a continuous electrocoagulation process using an artificial intelligence approach
    Graca, Nuno S.
    Ribeiro, Ana M.
    Rodrigues, Alirio E.
    WATER SUPPLY, 2022, 22 (01) : 643 - 658
  • [7] Modeling Fentonic advanced oxidation process decolorization of Direct Red 16 using artificial neural network technique
    Saien, Javad
    Soleymani, Ali Reza
    Bayat, Hossein
    DESALINATION AND WATER TREATMENT, 2012, 40 (1-3) : 174 - 182
  • [8] TURN-MILLING PROCESS PARAMETERS OPTIMISATION USING AN ARTIFICIAL INTELLIGENCE SYSTEM
    Albu, Adriana
    Pamintas, Eugen
    Banciu, Felicia
    Carausu, Constantin
    Ruset, Vasile
    Belgiu, George
    MODTECH 2010: NEW FACE OF TMCR, PROCEEDINGS, 2010, : 23 - 26
  • [9] ARTIFICIAL INTELLIGENCE MODELING OF PHYSIOLOGICAL PARAMETERS AT ANAEROBIC THRESHOLD
    Chikov, A. E.
    Pavlov, E. A.
    Egorov, N. A.
    Medvedev, D. S.
    Chikova, S. N.
    Drobintsev, P. D.
    HUMAN SPORT MEDICINE, 2022, 22 : 46 - 53
  • [10] MODELING OF THE OIL RECOVERY PROCESS FOR MANAGING THE DEVELOPMENT OF DEPOSITS USING ARTIFICIAL INTELLIGENCE
    Kuleshova, L. S.
    SOCAR PROCEEDINGS, 2024, : 22 - 25