Toward a Class of Port-Hamiltonian Systems With Time-Delays

被引:0
|
作者
Breiten, Tobias [1 ]
Hinsen, Dorothea [1 ]
Unger, Benjamin [2 ]
机构
[1] Tech Univ Berlin, Dept Math, D-10717 Berlin, Germany
[2] Univ Stuttgart, Stuttgart Ctr Simulat Sci SimTech, D-70569 Stuttgart, Germany
关键词
Delays; Stability criteria; Reviews; Linear systems; Indexes; IP networks; History; Kalman-Yakubovich-Popov inequality; Lyapunov- Krasovskii functional; port-Hamiltonian system; time-delay; STABILITY ANALYSIS;
D O I
10.1109/TAC.2024.3464332
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The framework of port-Hamiltonian (pH) systems is a powerful and broadly applicable modeling paradigm. In this article, we extend the scope of pH systems to time-delay systems. Our definition of a delay pH system is motivated by investigating the Kalman-Yakubovich-Popov inequality on the corresponding infinite-dimensional operator equation. Moreover, we show that delay pH systems are passive and closed under interconnection. We describe an explicit way to construct a Lyapunov-Krasovskii functional and discuss implications for delayed feedback.
引用
收藏
页码:8924 / 8930
页数:7
相关论文
共 50 条
  • [1] Dirac Structures for a Class of Port-Hamiltonian Systems in Discrete Time
    Moreschini, Alessio
    Monaco, Salvatore
    Normand-Cyrot, Dorothee
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (03) : 1999 - 2006
  • [3] Stability of port-Hamiltonian systems with mixed time delays subject to input saturation
    Chen, Yufei
    Liu, Qihuai
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2024, 29 (01): : 124 - 145
  • [4] On the flat representation for a particular class of port-Hamiltonian systems
    Zafeiratou, I
    Prodan, I
    Lefevre, L.
    IFAC PAPERSONLINE, 2020, 53 (02): : 13143 - 13148
  • [5] Stochastic Port-Hamiltonian Systems
    Francesco Cordoni
    Luca Di Persio
    Riccardo Muradore
    Journal of Nonlinear Science, 2022, 32
  • [6] Finite-time thermodynamics of port-Hamiltonian systems
    Delvenne, Jean-Charles
    Sandberg, Henrik
    PHYSICA D-NONLINEAR PHENOMENA, 2014, 267 : 123 - 132
  • [7] Incrementally port-Hamiltonian systems
    Camlibel, M. K.
    van der Schaft, A. J.
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 2538 - 2543
  • [8] On contraction of time-varying port-Hamiltonian systems
    Barabanov, Nikita
    Ortega, Romeo
    Pyrkin, Anton
    SYSTEMS & CONTROL LETTERS, 2019, 133
  • [9] PORT-HAMILTONIAN SYSTEMS ON GRAPHS
    van der Schaft, A. J.
    Maschke, B. M.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (02) : 906 - 937
  • [10] Memristive port-Hamiltonian Systems
    Jeltsema, Dimitri
    van der Schaft, Arjan J.
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2010, 16 (02) : 75 - 93