Life-cycle environmental impacts of reused batteries of electric vehicles in buildings considering battery uncertainty

被引:1
|
作者
Kang, Hyuna [1 ]
Jung, Seunghoon [1 ]
Kim, Hakpyeong [1 ]
An, Jongbaek [1 ]
Hong, Juwon [1 ]
Yeom, Seungkeun [1 ]
Hong, Taehoon [1 ]
机构
[1] Yonsei Univ, Dept Architecture & Architectural Engn, Seoul 03722, South Korea
来源
基金
新加坡国家研究基金会;
关键词
Environmental impact; Electric vehicle (EV) battery; Energy storage system; Second-life batteries; Life cycle assessment (LCA); ECONOMIC-ASSESSMENT; ENERGY; SYSTEMS; COST;
D O I
10.1016/j.rser.2024.114936
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Advancements in various technologies have made it possible to recycle end-of-life batteries from electric vehicles (EV) into a stationary energy storage system (ESS) within residential buildings. As a result, promoting a circular economy between buildings and means of transportation has emerged as a major concern. Therefore, this study aimed to quantitatively assess the environmental impacts (life -cycle carbon Carbon dioxide (CO2) emissions) of ESS utilizing used batteries instead of new batteries from the life cycle perspective of lithium-ion batteries (LIBs) considering the uncertainty in energy communities. To this end, a probabilistic life cycle assessment (LCA) was performed using a Monte Carlo simulation of the energy community of South Korea. The results of this study demonstrated that reusing batteries as ESS in buildings could further improve the overall environmental sustainability of the ESS compared to using new batteries. As a result, when reused batteries were utilized, annual carbon emissions decreased by 2.8 %-18.5 % according to battery usage purposes. More specifically, it was shown that battery reuse can reduce greenhouse gas emissions and environmental impacts. To more rationally evaluate life-cycle CO2 emissions from a resource circulation perspective, the usage purpose and efficiency of the battery should be considered during the entire battery life cycle (transportation and building sectors). These findings are expected to provide valuable insights to policymakers, industrial sectors, and research institutes related to battery reuse and to help guide the future of transportation and building sectors in a sustainable direction from a resource circulation perspective.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Sensitivity analysis of design variables in life-cycle environmental impacts of buildings
    Zhou, Yijun
    Tam, Vivian WY.
    Le, Khoa N.
    JOURNAL OF BUILDING ENGINEERING, 2023, 65
  • [2] A review of the life cycle assessment of electric vehicles: Considering the influence of batteries
    Xia, Xiaoning
    Li, Pengwei
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 814
  • [3] Quest for Sustainability: Life-Cycle Emissions Assessment of Electric Vehicles Considering Newer Li-Ion Batteries
    Almeida, Arminda
    Sousa, Nuno
    Coutinho-Rodrigues, Joao
    SUSTAINABILITY, 2019, 11 (08):
  • [4] Life cycle analysis of the environmental impacts of electric vehicle batteries
    Adams, WA
    El-Taki, W
    Oliveira, J
    ENERGY AND ELECTROCHEMICAL PROCESSING FOR A CLEANER ENVIRONMENT, 1998, 97 (28): : 189 - 195
  • [5] Life cycle assessment of electric vehicles' lithium-ion batteries reused for energy storage
    Fan, Tao
    Liang, Weicheng
    Guo, Wei
    Feng, Tao
    Li, Wei
    JOURNAL OF ENERGY STORAGE, 2023, 71
  • [6] Life cycle cost of conventional, battery electric, and fuel cell electric vehicles considering traffic and environmental policies in China
    Li, Junjie
    Liang, Mei
    Cheng, Wanjing
    Wang, Shuhao
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (14) : 9553 - 9566
  • [7] Sustainable urban water resources management considering life-cycle environmental impacts of water utilization under uncertainty
    Cai, Yanpeng
    Yue, Wencong
    Xu, Linyu
    Yang, Zhifeng
    Rong, Qiangqiang
    RESOURCES CONSERVATION AND RECYCLING, 2016, 108 : 21 - 40
  • [8] Principles for the development and use of benchmarks for life-cycle related environmental impacts of buildings
    Luetzkendorf, T.
    Balouktsi, M.
    LIFE-CYCLE ANALYSIS AND ASSESSMENT IN CIVIL ENGINEERING: TOWARDS AN INTEGRATED VISION, 2019, : 783 - 790
  • [9] Comparing the circularity and life cycle environmental performance of batteries for electric vehicles
    Picatoste, Aitor
    Schulz-Monninghoff, Magnus
    Niero, Monia
    Justel, Daniel
    Mendoza, Joan Manuel F.
    RESOURCES CONSERVATION AND RECYCLING, 2024, 210
  • [10] Life-cycle assessment - An abridged life-cycle assessment of electric vehicle batteries
    Steele, NLC
    Allen, DT
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1998, 32 (01) : 40A - 46A