Joint Feature Encoding and Task Alignment Mechanism for Emotion-Cause Pair Extraction

被引:0
|
作者
Li, Shi [1 ]
Sun, Didi [1 ]
机构
[1] Northeast Forestry Univ, Coll Comp & Control Engn, Harbin 150040, Peoples R China
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2025年 / 82卷 / 01期
关键词
Emotion-cause pair extraction; interactive information enhancement; joint feature encoding; label consistency; task alignment mechanisms;
D O I
10.32604/cmc.2024.057349
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the rapid expansion of social media, analyzing emotions and their causes in texts has gained significant importance. Emotion-cause pair extraction enables the identification of causal relationships between emotions and their triggers within a text, facilitating a deeper understanding of expressed sentiments and their underlying reasons. This comprehension is crucial for making informed strategic decisions in various business and societal contexts. However, recent research approaches employing multi-task learning frameworks for modeling often face challenges such as the inability to simultaneously model extracted features and their interactions, or inconsistencies in label prediction between emotion-cause pair extraction and independent assistant tasks like emotion and cause extraction. To address these issues, this study proposes an emotion-cause pair extraction methodology that incorporates joint feature encoding and task alignment mechanisms. The model consists of two primary components: First, joint feature encoding simultaneously generates features for emotion-cause pairs and clauses, enhancing feature interactions between emotion clauses, cause clauses, and emotion-cause pairs. Second, the task alignment technique is applied to reduce the labeling distance between emotion-cause pair extraction and the two assistant tasks, capturing deep semantic information interactions among tasks. The proposed method is evaluated on a Chinese benchmark corpus using 10-fold cross-validation, assessing key performance metrics such as precision, recall, and F1 score. Experimental results demonstrate that the model achieves an F1 score of 76.05%, surpassing the state-of-the-art by 1.03%. The proposed model exhibits significant improvements in emotion-cause pair extraction (ECPE) and cause extraction (CE) compared to existing methods, validating its effectiveness. This research introduces a novel approach based on joint feature encoding and task alignment mechanisms, contributing to advancements in emotion-cause pair extraction. However, the study's limitation lies in the data sources, potentially restricting the generalizability of the findings.
引用
收藏
页码:1069 / 1086
页数:18
相关论文
共 50 条
  • [1] Emotion-Cause Pair Extraction: A New Task to Emotion Analysis in Texts
    Xia, Rui
    Ding, Zixiang
    57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 1003 - 1012
  • [2] Multimodal Emotion-Cause Pair Extraction in Conversations
    Wang, Fanfan
    Ding, Zixiang
    Xia, Rui
    Li, Zhaoyu
    Yu, Jianfei
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2023, 14 (03) : 1832 - 1844
  • [3] Joint Constrained Learning with Boundary-adjusting for Emotion-Cause Pair Extraction
    Feng, Huawen
    Liu, Junlong
    Zheng, Junhao
    Chen, Haibin
    Shang, Xichen
    Ma, Qianli
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, VOL 1, 2023, : 1118 - 1131
  • [4] ECPEC: Emotion-Cause Pair Extraction in Conversations
    Li, Wei
    Li, Yang
    Pandelea, Vlad
    Ge, Mengshi
    Zhu, Luyao
    Cambria, Erik
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2023, 14 (03) : 1754 - 1765
  • [5] A Multi-Task Learning Neural Network for Emotion-Cause Pair Extraction
    Wu, Sixing
    Chen, Fang
    Wu, Fangzhao
    Huang, Yongfeng
    Li, Xing
    ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 2212 - 2219
  • [6] Joint multi-level attentional model for emotion detection and emotion-cause pair extraction
    Tang, Hao
    Ji, Donghong
    Zhou, Qiji
    NEUROCOMPUTING, 2020, 409 : 329 - 340
  • [7] Recurrent synchronization network for emotion-cause pair extraction
    Chen, Fang
    Shi, Ziwei
    Yang, Zhongliang
    Huang, Yongfeng
    KNOWLEDGE-BASED SYSTEMS, 2022, 238
  • [8] Emotion-cause pair extraction based on interactive attention
    Huang, Weichun
    Yang, Yixue
    Huang, Xiaohui
    Peng, Zhiying
    Xiong, Liyan
    APPLIED INTELLIGENCE, 2023, 53 (09) : 10548 - 10558
  • [9] Emotion-cause pair extraction based on interactive attention
    Weichun Huang
    Yixue Yang
    Xiaohui Huang
    Zhiying Peng
    Liyan Xiong
    Applied Intelligence, 2023, 53 : 10548 - 10558
  • [10] Modularized Mutuality Network for Emotion-Cause Pair Extraction
    Shang, Xichen
    Chen, Chuxin
    Chen, Zipeng
    Ma, Qianli
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2023, 31 : 539 - 549