Surface plasmon resonance sensor with 2D materials for enhanced refractive index detection of chemical pollutants in seawater

被引:0
|
作者
机构
[1] Nirmal Kannan, V.
[2] Prabhakar, G.
[3] Ayyanar, N.
来源
关键词
Bioremediation - Chemical sensors - Haze pollution - Indicators (chemical) - Marine pollution;
D O I
10.1016/j.ijleo.2024.172157
中图分类号
学科分类号
摘要
This paper introduces a highly sensitive, graphene-based, multilayer surface plasmon resonance (SPR) refractive index sensor is designed for the detection of chemical pollutants in seawater. The sensor structure consists of multiple layers, specifically BK7 glass, Chromium (Cr), Copper (Cu), MXene, and Graphene. SPR sensors have gained significant attention in the field of real-time chemical sensing due to their label-free detection capabilities, high sensitivity, and excellent reproducibility. In this sensor design, the refractive index (RI) of the sensing region is altered by the interaction of chemical pollutants present in the seawater. These variations in RI directly affect the excitation of surface plasmon polaritons (SPPs) at the multilayer sensor interface. This interaction forms the basis for detecting chemical pollutants, as changes in RI modulate the sensor's optical response, which can be accurately measured. The performance of the proposed sensor is thoroughly evaluated using numerical simulations based on the Transfer Matrix Method (TMM). The simulations are carried out over a refractive index range of 1.329–1.433, covering the typical RI variations caused by chemical pollutants in seawater. The sensor demonstrated exceptional performance, achieving a maximum sensitivity of 186 deg/RIU at an operational wavelength of 633 nm. Additionally, the sensor is exhibited a high detection accuracy (DA) of 1.5 deg⁻¹ and a figure of merit (FOM) of 205 RIU⁻¹, highlighting its ability to precisely distinguish small changes in refractive index. These results emphasize the potential of this graphene-based SPR sensor configuration for high-performance detection of chemical pollutants, making it an excellent candidate for environmental monitoring applications. Its robust design, combined with its high sensitivity and accuracy, positions it as a promising solution for addressing challenges in seawater pollution detection and monitoring. © 2024 Elsevier GmbH
引用
收藏
相关论文
共 50 条
  • [1] Development of surface plasmon resonance sensor with enhanced sensitivity for low refractive index detection
    Patel, Shobhit K.
    Wekalao, Jacob
    Alsalman, Osamah
    Surve, Jaymit
    Parmar, Juveriya
    Taya, Sofyan A.
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (11)
  • [2] Development of surface plasmon resonance sensor with enhanced sensitivity for low refractive index detection
    Shobhit K. Patel
    Jacob Wekalao
    Osamah Alsalman
    Jaymit Surve
    Juveriya Parmar
    Sofyan A. Taya
    Optical and Quantum Electronics, 2023, 55
  • [3] Enhanced refractive index sensing using a surface plasmon resonance sensor with heterostructure
    Kumar, Rajeev
    Agarwal, Sajal
    Pal, Sarika
    Prajapati, Yogendra Kumar
    Saini, J. P.
    MICRO AND NANOSTRUCTURES, 2023, 183
  • [4] Highly sensitive surface plasmon resonance sensor for refractive index detection of Helicobacter Pylori
    Singh, Lokendra
    Vasimalla, Yesudasu
    Kumar, Roshan
    Pareek, Prakash
    OPTIK, 2023, 274
  • [5] Surface plasmon resonance based refractive index sensor for liquids
    Mehan, N
    Gupta, V
    Sreenivas, K
    Mansingh, A
    INDIAN JOURNAL OF PURE & APPLIED PHYSICS, 2005, 43 (11) : 854 - 858
  • [6] Terminated optical fiber sensor based on surface plasmon resonance for refractive index detection
    Iga, M
    Seki, A
    Watanabe, K
    SECOND EUROPEAN WORKSHOP ON OPTICAL FIBRE SENSORS: PROCEEDINGS, 2004, 5502 : 230 - 233
  • [7] Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index
    Liu, Bing-Hong
    Jiang, Yong-Xiang
    Zhu, Xiao-Song
    Tang, Xiao-Li
    Shi, Yi-Wei
    OPTICS EXPRESS, 2013, 21 (26): : 32349 - 32357
  • [8] Surface plasmon resonance sensor for low refractive index detection based on microstructured fiber
    Wang, Jianshuai
    Pei, Li
    Wang, Ji
    Ruan, Zuliang
    Zheng, Jingjing
    Li, Jing
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2019, 36 (11) : 3104 - 3110
  • [9] Surface plasmon resonance chemical sensor composed of a microstructured optical fiber for the detection of an ultra-wide refractive index range and gas-liquid pollutants
    Liu, Wei
    Shi, Ying
    Yi, Zao
    Liu, Chao
    Wang, Famei
    Li, Xianli
    Lv, Jingwei
    Yang, Lin
    Chu, Paul K.
    OPTICS EXPRESS, 2021, 29 (25) : 40734 - 40747
  • [10] Sensitivity enhancement of refractive index-based surface plasmon resonance sensor for glucose detection
    Karki, Bhishma
    Jha, Ankit
    Pal, Amrindra
    Srivastava, Vivek
    OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (09)