Property prediction of fuel mixtures using pooled graph neural networks

被引:1
|
作者
Leenhouts, Roel J. [1 ]
Larsson, Tara [2 ]
Verhelst, Sebastian [2 ]
Vermeire, Florence H. [1 ]
机构
[1] Katholieke Univ Leuven, Dept Chem Engn, Celestijnenlaan 200F, B-3000 Leuven, Belgium
[2] Univ Ghent, Sint Pietersnieuwstr 41, BE-9000 Ghent, Belgium
关键词
Machine learning; Graph neural network; Property prediction; Renewable fuel; Mixtures; FLASH POINTS; DYNAMIC VISCOSITY; BINARY-MIXTURES; CETANE NUMBER; TERNARY; DENSITIES; MODELS;
D O I
10.1016/j.fuel.2024.133218
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Renewable fuels offer a sustainable option for engine applications where electrification is more challenging, not possible. To evaluate the potential of novel fuels it is crucial to first determine their combustion and spray related properties. This can be done experimentally, but during screening of multiple fuel candidates this can be cost and time expensive. Machine learning can be used for rapid, inexpensive, and accurate predictions of fuel mixture properties. To this end a novel function for pooling molecular representations called MolPool has been developed, which was combined with graph neural networks. The new approach processes the input permutation invariant, allowing for application to a varying number of components in the mixture. In this article, three different compression ignition engine related properties were investigated: derived cetane number (DCN), flashpoint, and viscosity. The results show that this novel neural network approach is able to increase the prediction accuracy and the generalizibility compared to traditional blending laws for all investigated properties. MolPool improves the prediction if oxygenated species are present in the mixture resulting non-linear mixture behavior, which is common for renewable fuels. Thus, MolPool shows great potential for prediction of various properties and fuel mixtures.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Composite Graph Neural Networks for Molecular Property Prediction
    Bongini, Pietro
    Pancino, Niccolo
    Bendjeddou, Asma
    Scarselli, Franco
    Maggini, Marco
    Bianchini, Monica
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (12)
  • [2] Graph Neural Networks for Prediction of Fuel Ignition Quality
    Schweidtmann, Artur M.
    Rittig, Jan G.
    Koenig, Andrea
    Grohe, Martin
    Mitsos, Alexander
    Dahmen, Manuel
    ENERGY & FUELS, 2020, 34 (09) : 11395 - 11407
  • [3] Graph neural networks for surfactant multi-property prediction
    Brozos, Christoforos
    Rittig, Jan G.
    Bhattacharya, Sandip
    Akanny, Elie
    Kohlmann, Christina
    Mitsos, Alexander
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 694
  • [4] Nucleophilicity Prediction Using Graph Neural Networks
    Nie, Wan
    Liu, Deguang
    Li, Shuaicheng
    Yu, Haizhu
    Fu, Yao
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2022, 62 (18) : 4319 - 4328
  • [5] Footfall Prediction Using Graph Neural Networks
    Boz, Hasan Alp
    Bahrami, Mohsen
    Balcisoy, Selim
    Pentland, Alex
    2023 31ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2023,
  • [6] Self-supervised graph neural networks for polymer property prediction
    Gao, Qinghe
    Dukker, Tammo
    Schweidtmann, Artur M.
    Weber, Jana M.
    MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2024, 9 (11): : 1130 - 1143
  • [7] Property Prediction of Functional Organic Molecular Crystals with Graph Neural Networks
    O'Connor, Dana
    Buitrago, Paola A.
    PRACTICE AND EXPERIENCE IN ADVANCED RESEARCH COMPUTING 2024, PEARC 2024, 2024,
  • [8] Quantitative evaluation of explainable graph neural networks for molecular property prediction
    Rao, Jiahua
    Zheng, Shuangjia
    Lu, Yutong
    Yang, Yuedong
    PATTERNS, 2022, 3 (12):
  • [9] Chain-aware graph neural networks for molecular property prediction
    Wang, Honghao
    Zhang, Acong
    Zhong, Yuan
    Tang, Junlei
    Zhang, Kai
    Li, Ping
    BIOINFORMATICS, 2024, 40 (10)
  • [10] Comparison of Atom Representations in Graph Neural Networks for Molecular Property Prediction
    Pocha, Agnieszka
    Dana, Tomasz
    Podlewska, Sabina
    Tabor, Jacek
    Maziarka, Lukasz
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,