Self-Healing, Electrically Conductive, Antibacterial, and Adhesive Eutectogel Containing Polymerizable Deep Eutectic Solvent for Human Motion Sensing and Wound Healing

被引:0
|
作者
Vakili, Shaghayegh [1 ]
Mohamadnia, Zahra [2 ]
Ahmadi, Ebrahim [1 ]
机构
[1] Univ Zanjan, Fac Sci, Dept Chem, Zanjan 45195313, Iran
[2] Inst Adv Studies Basic Sci IASBS, Dept Chem, Zanjan 4513766731, Iran
关键词
HYDROGELS; FABRICATION; CYCLODEXTRIN;
D O I
10.1021/acs.biomac.4c00960
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Flexible electronic devices such as wearable sensors are essential to advance human-machine interactions. Conductive eutectogels are promising for wearable sensors, despite their challenges in self-healing and adhesion properties. This study introduces a multifunctional eutectogel based on a novel polymerizable deep eutectic solvent (PDES) prepared by the incorporation of diallyldimethylammonium chloride (DADMAC) and glycerol in the presence of polycyclodextrin (PCD)/dopamine-grafted gelatin (Gel-DOP)/oxidized sodium alginate (OSA). The synthesized eutectogel has reversible Schiff-base bonds, hydrogen bonds, and host-guest interactions, which enable rapid self-healing upon network disruption. GPDO-15 eutectogel has significant tissue adhesion, high stretchability (419%), good ionic conductivity (0.79 mS<middle dot>cm-1), and favorable antibacterial and self-healing properties. These eutectogels achieve 90% antibacterial effect, show excellent biocompatibility, and can be used as sensors to monitor human activities with strong stability and durability. The in vivo studies indicate that the eutectogels can improve the wound healing process which makes them an effective option for biological dressings.
引用
收藏
页码:7704 / 7722
页数:19
相关论文
共 50 条
  • [1] A Self-Healing Conductive Elastomer Based on a Polymerizable Deep Eutectic Solvent
    Wang, Xiaoming
    Weng, Ling
    Zhang, Xiaorui
    Wu, Zijian
    Guan, Lizhu
    Li, Xue
    SMALL, 2024, 20 (11)
  • [2] Antibacterial adhesive self-healing hydrogels to promote diabetic wound healing
    Chen, Jueying
    He, Jiahui
    Yang, Yutong
    Qiao, Lipeng
    Hu, Juan
    Zhang, Jie
    Guo, Baolin
    Acta Biomaterialia, 2022, 146 : 119 - 130
  • [3] Antibacterial adhesive self-healing hydrogels to promote diabetic wound healing
    Chen, Jueying
    He, Jiahui
    Yang, Yutong
    Qiao, Lipeng
    Hu, Juan
    Zhang, Jie
    Guo, Baolin
    ACTA BIOMATERIALIA, 2022, 146 : 119 - 130
  • [4] Self-Healing Bimodal Sensors Based on Bioderived Polymerizable Deep Eutectic Solvent Ionic Elastomers
    Cui, Qinke
    Huang, Xin
    Dong, Xiangyu
    Zhao, Huaiyu
    Liu, Xuehui
    Zhang, Xinxing
    CHEMISTRY OF MATERIALS, 2022, : 10778 - 10788
  • [5] An injectable self-healing hydrogel with adhesive and antibacterial properties effectively promotes wound healing
    Chen, Honglei
    Cheng, Junwen
    Ran, Luoxiao
    Yu, Kun
    Lu, Bitao
    Lan, Guangqian
    Dai, Fangying
    Lu, Fei
    CARBOHYDRATE POLYMERS, 2018, 201 : 522 - 531
  • [6] Highly Adhesive, Conductive, and Self-Healing Hydrogel with Triple Cross-Linking Inspired by Mussel and DNA for Wound Adhesion and Human Motion Sensing
    Ma, Xiaodie
    Wang, Chunyao
    Yuan, Weizhong
    Xie, Xiaoyun
    Song, Ye
    ACS APPLIED POLYMER MATERIALS, 2021, 3 (12): : 6586 - 6597
  • [7] Antibacterial conductive self-healing hydrogel wound dressing with dual dynamic bonds promotes infected wound healing
    Qiao, Lipeng
    Liang, Yongping
    Chen, Jueying
    Huang, Ying
    Alsareii, Saeed A.
    Alamri, Abdulrahman Manaa
    Harraz, Farid A.
    Guo, Baolin
    BIOACTIVE MATERIALS, 2023, 30 : 129 - 141
  • [8] Cellulose nanocrystal reinforced conductive nanocomposite hydrogel with fast self-healing and self-adhesive properties for human motion sensing
    Liu, Xiaoyan
    Ma, Yujie
    Zhang, Xuehai
    Huang, Jianguo
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2021, 613
  • [9] Highly Adhesive, Ultrafast Self-Healing, and Conductive Dopamine-Based Polymer Hydrogels for Sensitive Human Motion Sensing
    Zhou, Hang
    Yu, Xudong
    ACS APPLIED POLYMER MATERIALS, 2024, 6 (14): : 8548 - 8559
  • [10] Self-Healing, Antibacterial, and 3D-Printable Polymerizable Deep Eutectic Solvents Derived from Tannic Acid
    Zhu, Guoqiang
    Zhang, Jinshuai
    Huang, Jia
    Yu, Xixi
    Cheng, Jianwen
    Shang, Qianqian
    Hu, Yun
    Liu, Chengguo
    Zhang, Meng
    Hu, Lihong
    Zhou, Yonghong
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (24) : 7954 - 7964