Amplitude death in steadily forced chaotic systems

被引:11
|
作者
Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China [1 ]
不详 [2 ]
不详 [3 ]
机构
来源
Chin. Phys. | 2007年 / 9卷 / 2825-2829期
关键词
Lorentz force - Numerical analysis;
D O I
10.1088/1009-1963/16/9/055
中图分类号
学科分类号
摘要
Steady forcing can induce the amplitude death in chaotic systems, which generally exists in coupled dynamic systems. Using the Lorenz system as a typical example, this paper investigates the dynamic behaviours of the chaotic system with steady forcing numerically, and finds that amplitude death can occur as the strength of the steady forcing goes beyond a critical constant. © 2007 Chin. Phys. Soc. and IOP Publishing Ltd.
引用
收藏
相关论文
共 50 条
  • [1] Amplitude death in steadily forced chaotic systems
    Feng Guo-Lin
    He Wen-Ping
    CHINESE PHYSICS, 2007, 16 (09): : 2825 - 2829
  • [2] Amplitude death in coupled chaotic oscillators
    Prasad, A
    PHYSICAL REVIEW E, 2005, 72 (05):
  • [3] Mixing of non-Newtonian fluids in steadily forced systems
    Arratia, PE
    Shinbrot, T
    Alvarez, MM
    Muzzio, FJ
    PHYSICAL REVIEW LETTERS, 2005, 94 (08)
  • [4] Partial amplitude death in coupled chaotic oscillators
    Liu, WQ
    Xiao, JH
    Yang, JZ
    PHYSICAL REVIEW E, 2005, 72 (05):
  • [5] Constructing Chaotic Systems with Total Amplitude Control
    Li, Chunbiao
    Sprott, Julien Clinton
    Yuan, Zeshi
    Li, Hongtao
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (10):
  • [6] Structure of amplitude correlations in open chaotic systems
    Ericson, Torleif E. O.
    PHYSICAL REVIEW E, 2013, 87 (02):
  • [7] Experimental observation of partial amplitude death in coupled chaotic oscillators
    Liu Wei-Qing
    Yang Jun-Zhong
    Xiao Jing-Hua
    CHINESE PHYSICS, 2006, 15 (10): : 2260 - 2265
  • [8] Amplitude death in non-feedback coupled chaotic system
    He Wen-Ping
    Feng Guo-Lin
    Gao Xin-Quan
    Li Jian-Ping
    ACTA PHYSICA SINICA, 2006, 55 (11) : 6192 - 6196
  • [9] Forced sliding mode control for chaotic systems synchronization
    Kuz'menko, A. A.
    NONLINEAR DYNAMICS, 2022, 109 (03) : 1763 - 1775
  • [10] Forced sliding mode control for chaotic systems synchronization
    A. A. Kuz’menko
    Nonlinear Dynamics, 2022, 109 : 1763 - 1775