Numerical investigation on cooling performance of a twisted gas turbine blade with leading edge cooling holes

被引:0
|
作者
Moughbul Basha Shaik A. [1 ]
Mithilesh Kumar Sahu B. [1 ]
机构
[1] Department of Mechanical Engineering, Gayatri Vidya Parishad College of Engineering (Autonomous), Madhurawada, AP
关键词
Blowing ratios; Coolant density; Cooling performance; Gas turbine blade; Hole geometry; Numerical approach;
D O I
10.22061/JCARME.2021.6418.1816
中图分类号
学科分类号
摘要
The new and advance technologies for higher performance and lower maintenance are required to operate gas turbines at higher operating temperatures. Higher turbine inlet temperature results in higher blade metal temperatures. These variations in temperatures of the blade material must be limited such that the blades have a sufficient life span. To make blade material temperature within the limits, the coolant air is bled from the compressor to protect the outer surface of the turbine blade from the hot gases. The purpose of this study is to investigate the cooling performance of a blade with leading edge cooling holes. The numerical simulation approach using ANSYS Fluent has been considered. The analysis is performed by taking different hole geometries namely cylindrical (model 1) and tapered (model 2) on the leading edge of the turbine blade for different blowing ratios. The analysis also compares the cooling effectiveness of the blade for two different coolants namely air and nitrogen. The results show that for highest effectiveness hole (E3 hole), Model 1 and Model 2 comparison suggest that Model 1 has 1.2% more cooling effectiveness for air as coolant. For E3 hole, the comparison of Model 1 between two coolants show that film cooling effectiveness of the air gives 0.6% more film cooling effectiveness compared to nitrogen. The presented work helps researchers and blade manufacturers to select the correct hole geometry, coolant type, and determine the best blowing ratio to improve the film cooling efficiency of gas turbine blades with leading edge holes. © 2021 The author(s).
引用
收藏
页码:397 / 407
页数:10
相关论文
共 50 条
  • [1] NUMERICAL ANALYSIS ON THE LEADING EDGE FILM COOLING OF BIFURCATION HOLES FOR GAS TURBINE BLADE
    Tang, Zhonghao
    Xie, Gongnan
    Li, Honglin
    Gao, Wenjing
    Tan, Chunlong
    Li, Lei
    PROCEEDINGS OF THE ASME 2021 HEAT TRANSFER SUMMER CONFERENCE (HT2021), 2021,
  • [2] Film cooling with compound angle holes in leading edge of twisted turbine blade
    Ren M.
    Liu C.
    Du K.
    Zhang L.
    Zhu H.
    Zhang B.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2023, 44 (18):
  • [3] Numerical investigation of a novel multistage swirl cooling conception in blade leading edge of gas turbine
    Yao, Ran
    Su, Hang
    Cheng, Yun
    Wang, Jianhua
    Pu, Jian
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2022, 172
  • [4] Numerical investigation of nozzle geometry influence on the vortex cooling in an actual gas turbine blade leading edge cooling system
    Fan, Xiaojun
    Xue, Yuan
    HEAT AND MASS TRANSFER, 2022, 58 (04) : 575 - 586
  • [5] Numerical investigation of nozzle geometry influence on the vortex cooling in an actual gas turbine blade leading edge cooling system
    Xiaojun Fan
    Yuan Xue
    Heat and Mass Transfer, 2022, 58 : 575 - 586
  • [6] Numerical simulation of film cooling in leading edge of turbine blade
    College of Power and Energy Engineering, Harbin University of Engineering, Harbin 150001, China
    不详
    不详
    Hangkong Dongli Xuebao, 2009, 3 (519-525): : 519 - 525
  • [7] NUMERICAL SIMULATION OF IMPINGING COOLING ON THE LEADING EDGE OF A TURBINE BLADE
    Cheng, Keyong
    Huai, Xiulan
    Cai, Jun
    Guo, Zhixiong
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 10, PTS A AND B, 2012, : 1077 - 1085
  • [8] Convective heat transfer through film cooling holes of a gas turbine blade leading edge
    Terrell, Elon J.
    Mouzon, Brian D.
    Bogard, David G.
    Proceedings of the ASME Turbo Expo 2005, Vol 3 Pts A and B, 2005, : 833 - 844
  • [9] Effect of rotation on leading edge region film cooling of a gas turbine blade with three rows of film cooling holes
    Ahn, Jaeyong
    Schobeiri, M. T.
    Han, Je-Chin
    Moon, Hee-Koo
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2007, 50 (1-2) : 15 - 25
  • [10] Numerical investigation about backflow of film cooling in static turbine blade leading edge
    Gao, Chao
    Li, Haiwang
    Zhou, Huimin
    Ma, Yiwen
    You, Ruquan
    ADVANCES IN MECHANICAL ENGINEERING, 2019, 11 (11)