A deep decentralized privacy-preservation framework for online social networks

被引:0
|
作者
Frimpong, Samuel Akwasi [1 ,2 ]
Han, Mu [1 ]
Effah, Emmanuel Kwame [3 ]
Adjei, Joseph Kwame [4 ]
Hanson, Isaac [5 ]
Brown, Percy [4 ]
机构
[1] Jiangsu Univ, Sch Comp Sci & Commun Engn, Zhenjiang 212013, Peoples R China
[2] Ghana Commun Technol Univ, Dept Comp Engn, PMB 100, Accra, Ghana
[3] Ghana Commun Technol Univ, Dept Elect & Elect Engn, PMB 100, Accra, Ghana
[4] Ashesi Univ, Dept Comp Sci & Informat Syst, Accra 3042, Ghana
[5] Ghana Commun Technol Univ, Dept Telecommun Engn, PMB 100, Accra, Ghana
来源
关键词
Preprocessing; Privacy-preservation; Blockchain; Deep learning; Online social network; DIFFERENTIAL PRIVACY; PRESERVING-FRAMEWORK; BLOCKCHAIN; ATTACKS;
D O I
10.1016/j.bcra.2024.100233
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper addresses the critical challenge of privacy in Online Social Networks (OSNs), where centralized designs compromise user privacy. We propose a novel privacy-preservation framework that integrates blockchain technology with deep learning to overcome these vulnerabilities. Our methodology employs a two-tier architecture: the first tier uses an elitism-enhanced Particle Swarm Optimization and Gravitational Search Algorithm (ePSOGSA) for optimizing feature selection, while the second tier employs an enhanced Non-symmetric Deep Autoencoder (e-NDAE) for anomaly detection. Additionally, a blockchain network secures users' data via smart contracts, ensuring robust data protection. When tested on the NSL-KDD dataset, our framework achieves 98.79% accuracy, a 10% false alarm rate, and a 98.99% detection rate, surpassing existing methods. The integration of blockchain and deep learning not only enhances privacy protection in OSNs but also offers a scalable model for other applications requiring robust security measures.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Privacy Preservation in Decentralized Online Social Networks
    Schwittmann, Lorenz
    Wander, Matthaeus
    Boelmann, Christopher
    Weis, Torben
    IEEE INTERNET COMPUTING, 2014, 18 (02) : 16 - 23
  • [2] Utility analysis on privacy-preservation algorithms for online social networks: an empirical study
    Zhang C.
    Jiang H.
    Cheng X.
    Zhao F.
    Cai Z.
    Tian Z.
    Personal and Ubiquitous Computing, 2021, 25 (06) : 1063 - 1079
  • [3] Enabling Privacy-Preservation in Decentralized Optimization
    Zhang, Chunlei
    Wang, Yongqiang
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2019, 6 (02): : 679 - 689
  • [4] Incremental ADMM with Privacy-Preservation for Decentralized Consensus Optimization
    Ye, Yu
    Chen, Hao
    Xiao, Ming
    Skoglund, Mikael
    Poor, H. Vincent
    2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 209 - 214
  • [5] A survey on privacy in decentralized online social networks
    De Salve, Andrea
    Mori, Paolo
    Ricci, Laura
    COMPUTER SCIENCE REVIEW, 2018, 27 : 154 - 176
  • [6] Privacy-Preservation in Online Distributed Dual Averaging Optimization
    Wang, Wei
    Li, Dequan
    Wu, Xiongjun
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 5709 - 5714
  • [7] Social Networks Privacy Preservation: A Novel Framework
    Singh, Amardeep
    Singh, Monika
    CYBERNETICS AND SYSTEMS, 2024, 55 (08) : 2356 - 2387
  • [8] Model and service for privacy in decentralized online social networks
    George Pacheco Pinto
    José Ronaldo Leles Jr.
    Cíntia da Costa Souza
    Paulo R.de Souza
    Frederico Araújo Dur?o
    Cássio Prazeres
    Journal of Electronic Science and Technology, 2025, 23 (01) : 78 - 99
  • [9] Model and service for privacy in decentralized online social networks
    Pinto, George Pacheco
    Leles, José Ronaldo
    da Costa Souza, Cíntia
    de Souza, Paulo R.
    Durão, Frederico Araújo
    Prazeres, Cássio
    Journal of Electronic Science and Technology, 2025, 23 (01)
  • [10] An Empirical Study on the Privacy Preservation of Online Social Networks
    Siddula, Madhuri
    Li, Lijie
    Li, Yingshu
    IEEE ACCESS, 2018, 6 : 19912 - 19922