Synergistic effect of NASICON Na3V2(PO4)2F3 and 2D MXene for high-performance symmetric Sodium-ion batteries

被引:0
|
作者
Moossa, Buzaina [1 ,2 ]
Abraham, Jeffin James [1 ]
Ahmed, Abdul Moiz [3 ]
Kahraman, Ramazan [2 ]
Al-Qaradawi, Siham [4 ]
Shakoor, R. A. [1 ,3 ]
机构
[1] Qatar Univ, Ctr Adv Mat CAM, POB 2713, Doha, Qatar
[2] Qatar Univ, Coll Engn, Dept Chem Engn, POB 2713, Doha, Qatar
[3] Qatar Univ, Coll Engn, Dept Mech & Ind Engn, POB 2713, Doha, Qatar
[4] Qatar Univ, Coll Arts & Sci, Dept Chem & Earth Sci, POB 2713, Doha, Qatar
关键词
Sodium-Ion batteries; Symmetric batteries; Energy storage; Fluorophosphates; Electrochemical energy storage; Renewable energy; STORAGE; CATHODE; PARAMETERS; CELL;
D O I
10.1016/j.materresbull.2024.113173
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Sodium fluorophosphate-based Na3V2(PO4)2F3 (NVPF) cathode materials have been widely analyzed in Sodiumion batteries (SIB) owing to their high energy density and high working voltage. However, the low electronic conductivity of NVPF is a factor hindering their efficient use. To enhance the electronic conductivity of NVPF, in this work, a porous Na3V2(PO4)2F3 and a 2D Ti3C2 -based MXene nanocomposite was synthesized using a facile sol-gel method. The NVPF, with the presence of two active redox couples, is a suitable choice for symmetric batteries. The NVPF + 2D MXene nanocomposite was analyzed for its structural and thermal characteristics, and a symmetric cell prepared from them was investigated for its electrochemical characteristics. Structural analysis of the materials developed indicates that the MXene addition has not altered the crystal structure of the NVPF. A remarkable improvement in the electrochemical performance of NVPF in the sodium symmetric cell is noticed, as indicated by its high specific discharge capacity of 92mAhg-1 at 1C for the MXene-incorporated composite structures. This improvement in electrochemical behaviour is confirmed in the rate capability curves, GCD curves, and GITT curves. The diffusion coefficient values obtained from GITT analysis showed improved kinetics in the synthesized material due to the MXene incorporation. The calculated values of the diffusion coefficient of Na+confirms the accelerated kinetics of Na+ ion migration during the intercalation/de-intercalation process in the MXene 5wt% nanocomposites, with a value of 9.57 x 10-9 cm2s-1 when compared to 4. 14 x 10-9 cm2s-1 for the pristine sample.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] High performance cathode material based on Na3V2(PO4)2F3 and Na3V2(PO4)3 for sodium-ion batteries
    Yang, Ze
    Li, Guolong
    Sun, Jingying
    Xie, Lixin
    Jiang, Yan
    Huang, Yunhui
    Chen, Shuo
    ENERGY STORAGE MATERIALS, 2020, 25 (25) : 724 - 730
  • [2] Carbon quantum dot modified Na3V2(PO4)2F3 as a high-performance cathode material for sodium-ion batteries
    Liu, Shengyuan
    Cao, Xinxin
    Zhang, Yangpu
    Wang, Ke
    Su, Qiong
    Chen, Jing
    He, Qiong
    Liang, Shuquan
    Cao, Guozhong
    Pan, Anqiang
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (36) : 18872 - 18879
  • [3] Cycling properties of Na3V2(PO4)2F3 as positive material for sodium-ion batteries
    Pianta, Nicolo
    Locatelli, Davide
    Ruffo, Riccardo
    IONICS, 2021, 27 (05) : 1853 - 1860
  • [4] Superior electrochemical properties of Na3V2(PO4)2F3/rGO composite cathode for high-performance sodium-ion batteries
    Al-Marri, Abdulhadi Hamad
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2024, 28 (08) : 2861 - 2872
  • [5] Cycling properties of Na3V2(PO4)2F3 as positive material for sodium-ion batteries
    Nicolò Pianta
    Davide Locatelli
    Riccardo Ruffo
    Ionics, 2021, 27 : 1853 - 1860
  • [6] Superior performance of carbon modified Na3V2(PO4)2F3 cathode material for sodium-ion batteries
    Hu, Fangdong
    Jiang, Xiaolei
    INORGANIC CHEMISTRY COMMUNICATIONS, 2021, 129
  • [7] Modification of the morphology of Na3V2(PO4)2F3 as cathode material for sodium-ion batteries by polyvinylpyrrolidone
    Zhu, Weikai
    Liang, Kang
    Ren, Yurong
    CERAMICS INTERNATIONAL, 2021, 47 (12) : 17192 - 17201
  • [8] Robust Cross-Linked Na3V2(PO4)2F3 Full Sodium-Ion Batteries
    Gao, Jinqiang
    Tian, Ye
    Ni, Lianshan
    Wang, Baowei
    Zou, Kangyu
    Yang, Yingchang
    Wang, Ying
    Banks, Craig E.
    Zhang, Dou
    Zhou, Kechao
    Liu, Huan
    Deng, Wentao
    Zou, Guoqiang
    Hou, Hongshuai
    Ji, Xiaobo
    Energy and Environmental Materials, 2024, 7 (01):
  • [9] Robust Cross-Linked Na3V2(PO4)2F3 Full Sodium-Ion Batteries
    Gao, Jinqiang
    Tian, Ye
    Ni, Lianshan
    Wang, Baowei
    Zou, Kangyu
    Yang, Yingchang
    Wang, Ying
    Banks, Craig E.
    Zhang, Dou
    Zhou, Kechao
    Liu, Huan
    Deng, Wentao
    Zou, Guoqiang
    Hou, Hongshuai
    Ji, Xiaobo
    ENERGY & ENVIRONMENTAL MATERIALS, 2024, 7 (01)
  • [10] Realizing outstanding electrochemical performance with Na3V2(PO4)2F3 modified with an ionic liquid for sodium-ion batteries
    Yu, Xiaobo
    Lu, Tianyi
    Li, Xiaokai
    Qi, Jiawei
    Yuan, Luchen
    Man, Zu
    Zhuo, Haitao
    RSC ADVANCES, 2022, 12 (22) : 14007 - 14017