Influences on the anisotropy in through-mask electrochemical micromachining processes

被引:0
|
作者
Jakob, Leonie [1 ]
Bartsch, Jonas [1 ]
机构
[1] Fraunhofer Inst Solar Energy Syst ISE, Metallizat & Structuring Technol, Heidenhofstr 2, D-79110 Freiburg, Germany
关键词
Anisotropy; Through-mask EMM; Surface films; ANODIC-DISSOLUTION; SHAPE EVOLUTION; FABRICATION; TRANSPORT; ARRAYS; COPPER;
D O I
10.1016/j.electacta.2024.145366
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This contribution studies through-mask electrochemical micromachining (TMEMM) of copper, namely the interplay between current density, electrolyte flow, mask opening width, etch depth, the presence of a wetting agent, and the resulting anisotropy in sodium nitrate electrolyte. Factors strengthening the anisotropy are: High electrolyte flow rate, low overall etch depth and large feature size (150 mu m > 100 mu m > 50 mu m), absence of wetting agent, and moderate current densities (between 20 and 40 A cm(-2)). A model aiming to explain all the observed interdependencies is elaborated, based on the presence of a supersaturated surface film and a local change in dissolution mechanism in dependence on local current distribution and surface film thickness. The thickness of the surface film is greatly influenced by the flow velocity, which in turn depends on the geometry of the cavity and, therefore, opening width and etch depth. In the presence of a wetting agent the differences in surface film thickness are leveled out, which results in less anisotropic etching.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Anisotropy of dissolution rate in through-mask electrochemical micromachining
    Dikusar, AI
    Keloglu, OY
    Mustiatze, AN
    Yuschenkos, SP
    12TH INTERNATIONAL SYMPOSIUM FOR ELECTROMACHINING (ISEM), 1998, 1405 : 565 - 574
  • [2] Modeling of Through-Mask Electrochemical Micromachining
    Davydov, Alexey D.
    Kabanova, Tatyana B.
    Volgin, Vladimir M.
    10TH ESEE: EUROPEAN SYMPOSIUM ON ELECTROCHEMICAL ENGINEERING, 2014, 41 : 85 - 90
  • [3] Through-mask electrochemical micromachining of titanium
    Madore, C
    Piotrowski, O
    Landolt, D
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (07) : 2526 - 2532
  • [4] Modeling of through-mask electrochemical micromachining
    V. M. Volgin
    T. B. Kabanova
    A. D. Davydov
    Journal of Applied Electrochemistry, 2015, 45 : 679 - 688
  • [5] Modeling of through-mask electrochemical micromachining
    Volgin, V. M.
    Kabanova, T. B.
    Davydov, A. D.
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2015, 45 (07) : 679 - 688
  • [6] Microfabrication by through-mask electrochemical micromachining
    Datta, M
    MICROMACHINING AND MICROFABRICATION PROCESS TECHNOLOGY III, 1997, 3223 : 178 - 184
  • [7] Improved uniformity and anisotropy of through-mask electrochemical micromachining by localized etching and homogeneous flow
    Leonie Jakob
    Jonas Eckert
    Carl Podevijn
    Sven Kluska
    Mathias Junginger
    Christian Ranzinger
    Jonas Bartsch
    The International Journal of Advanced Manufacturing Technology, 2024, 130 : 995 - 1002
  • [8] Through-Mask Electrochemical Micromachining with Reciprocating Foamed Cathode
    Zhao, Chenhao
    Ming, Pingmei
    Zhang, Xinmin
    Qin, Ge
    Shen, Jiwen
    Yan, Liang
    Zheng, Xingshuai
    Cao, Jun
    MICROMACHINES, 2020, 11 (02)
  • [9] Improved uniformity and anisotropy of through-mask electrochemical micromachining by localized etching and homogeneous flow
    Jakob, Leonie
    Eckert, Jonas
    Podevijn, Carl
    Kluska, Sven
    Junginger, Mathias
    Ranzinger, Christian
    Bartsch, Jonas
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 130 (1-2): : 369 - 383
  • [10] Through-Mask Electrochemical Micromachining of Aluminum in Phosphoric Acid
    Baldhoff, T.
    Nock, V.
    Marshall, A. T.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (09) : E194 - E202