A Survey of Continual Learning with Deep Networks: Theory, Method and Application

被引:0
|
作者
Zhang, Dongyang [1 ]
Lu, Zixuan [1 ]
Liu, Junmin [1 ]
Li, Lanyu [2 ,3 ]
机构
[1] Xi’an Jiaotong University, Xi’an,710049, China
[2] Nanjing Research Institute of Electronics Technology, Nanjing,210039, China
[3] National Key Laboratory of Radar Detection and Sensing, Nanjing,210039, China
来源
Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology | 2024年 / 46卷 / 10期
关键词
Compendex;
D O I
10.11999/JEIT240095
中图分类号
学科分类号
摘要
Contrastive Learning
引用
收藏
页码:3849 / 3878
相关论文
共 50 条
  • [1] A Comprehensive Survey of Continual Learning: Theory, Method and Application
    Wang, Liyuan
    Zhang, Xingxing
    Su, Hang
    Zhu, Jun
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (08) : 5362 - 5383
  • [2] Continual Learning with Deep Neural Networks in Physiological Signal Data: A Survey
    Li, Ao
    Li, Huayu
    Yuan, Geng
    HEALTHCARE, 2024, 12 (02)
  • [3] A Survey on Continual Semantic Segmentation: Theory, Challenge, Method and Application
    Yuan, Bo
    Zhao, Danpei
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) : 10891 - 10910
  • [4] A Comprehensive Survey of Forgetting in Deep Learning Beyond Continual Learning
    Wang, Zhenyi
    Yang, Enneng
    Shen, Li
    Huang, Heng
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2025, 47 (03) : 1464 - 1483
  • [5] Embracing Change: Continual Learning in Deep Neural Networks
    Hadsell, Raia
    Rao, Dushyant
    Rusu, Andrei A.
    Pascanu, Razvan
    TRENDS IN COGNITIVE SCIENCES, 2020, 24 (12) : 1028 - 1040
  • [6] CONTINUAL UNSUPERVISED LEARNING FOR OPTICAL FLOW ESTIMATION WITH DEEP NETWORKS
    Marullo, Simone
    Tiezzi, Matteo
    Betti, Alessandro
    Faggi, Lapo
    Meloni, Enrico
    Melacci, Stefano
    CONFERENCE ON LIFELONG LEARNING AGENTS, VOL 199, 2022, 199
  • [7] A survey on uncertainty reasoning and quantification in belief theory and its application to deep learning
    Guo, Zhen
    Wan, Zelin
    Zhang, Qisheng
    Zhao, Xujiang
    Zhang, Qi
    Kaplan, Lance M.
    Josang, Audun
    Jeong, Dong H.
    Chen, Feng
    Cho, Jin-Hee
    INFORMATION FUSION, 2024, 101
  • [8] Application of deep learning to cybersecurity: A survey
    Mandavifar, Samaneh
    Ghorbani, Ali A.
    NEUROCOMPUTING, 2019, 347 : 149 - 176
  • [9] Progressive learning: A deep learning framework for continual learning
    Fayek, Haytham M.
    Cavedon, Lawrence
    Wu, Hong Ren
    NEURAL NETWORKS, 2020, 128 : 345 - 357
  • [10] Gating Mechanism in Deep Neural Networks for Resource-Efficient Continual Learning
    Jin, Hyundong
    Yun, Kimin
    Kim, Eunwoo
    IEEE ACCESS, 2022, 10 : 18776 - 18786