Reconstruction of implicit surfaces from fluid particles using convolutional neural networks

被引:0
|
作者
Zhao, C. [1 ]
Shinar, T. [1 ]
Schroeder, C. [1 ]
机构
[1] Univ Calif Riverside, Riverside, CA 92521 USA
关键词
<bold>Computing methodologies</bold> -> <bold>Physical simulation</bold>; <bold>Point-based models</bold>;
D O I
10.1111/cgf.15181
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we present a novel network-based approach for reconstructing signed distance functions from fluid particles. The method uses a weighting kernel to transfer particles to a regular grid, which forms the input to a convolutional neural network. We propose a regression-based regularization to reduce surface noise without penalizing high-curvature features. The reconstruction exhibits improved spatial surface smoothness and temporal coherence compared with existing state of the art surface reconstruction methods. The method is insensitive to particle sampling density and robustly handles thin features, isolated particles, and sharp edges.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Reconstruction of implicit surfaces from fluid particles using convolutional neural networks
    Zhao, C.
    Shinar, T.
    Schroeder, C.
    ACM SIGGRAPH / EUROGRAPHICS SYMPOSIUM OF COMPUTER ANIMATION 2024, 2024,
  • [2] Metallic Surfaces Binary Reconstruction Using Eddy Current Sensors and Convolutional Neural Networks
    Barrancos, Andre
    Pyekh, Markiyan
    Rosado, Luis S.
    IEEE SENSORS JOURNAL, 2024, 24 (05) : 6532 - 6538
  • [3] ReSDF: Redistancing implicit surfaces using neural networks
    Park, Yesom
    Song, Chang hoon
    Hahn, Jooyoung
    Kang, Myungjoo
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 502
  • [4] Porous Structure Reconstruction Using Convolutional Neural Networks
    Yuzhu Wang
    Christoph H. Arns
    Sheik S. Rahman
    Ji-Youn Arns
    Mathematical Geosciences, 2018, 50 : 781 - 799
  • [5] Porous Structure Reconstruction Using Convolutional Neural Networks
    Wang, Yuzhu
    Arns, Christoph H.
    Rahman, Sheik S.
    Arns, Ji-Youn
    MATHEMATICAL GEOSCIENCES, 2018, 50 (07) : 781 - 799
  • [6] TEMPERATURE FIELD RECONSTRUCTION OF SURFACES HEATED THROUGH RADIATIVE HEAT TRANSFER USING CONVOLUTIONAL NEURAL NETWORKS
    Machado, Luiz C. Aldeia
    Leite, Victor Coppo
    Merzari, Elia
    Wright, Lesley
    Bhat, Pramatha
    Hassan, Yassin
    Ibarra, Lander
    Ponciroli, Roberto
    PROCEEDINGS OF ASME 2024 HEAT TRANSFER SUMMER CONFERENCE, HT 2024, 2024,
  • [7] Fast Depth Reconstruction Using Deep Convolutional Neural Networks
    Maslov, Dmitrii
    Makarov, Ilya
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2021, PT I, 2021, 12861 : 456 - 467
  • [8] Baryon acoustic oscillations reconstruction using convolutional neural networks
    Mao, Tian-Xiang
    Wang, Jie
    Li, Baojiu
    Cai, Yan-Chuan
    Falck, Bridget
    Neyrinck, Mark
    Szalay, Alex
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 501 (01) : 1499 - 1510
  • [9] Reconstruction Techniques in IceCube using Convolutional and Generative Neural Networks
    Huennefeld, Mirco
    VERY LARGE VOLUME NEUTRINO TELESCOPES (VLVNT-2018), 2019, 207
  • [10] Feasibility of ECG Reconstruction From Minimal Lead Sets Using Convolutional Neural Networks
    Matyschik, Maksymilian
    Mauranen, Henry
    Karel, Joel
    Bonizzi, Pietro
    2020 COMPUTING IN CARDIOLOGY, 2020,