SRRT: Exploring Search Region Regulation for Visual Object Tracking

被引:0
|
作者
Zhu, Jiawen [1 ]
Chen, Xin [1 ]
Zhang, Pengyu [1 ]
Wang, Xinying [2 ]
Wang, Dong [1 ]
Zhao, Wenda [1 ]
Lu, Huchuan [1 ]
机构
[1] Dalian Univ Technol, Sch Informat & Commun Engn, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, Sch Comp Sci & Technol, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Search region regulation; visual object tracking;
D O I
10.1109/TCSVT.2024.3409898
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The dominant trackers generate a fixed-size rectangular region based on the previous prediction or initial bounding box as the model input, i.e., search region. While this manner obtains promising tracking efficiency, a fixed-size search region lacks flexibility and is likely to fail in some cases, e.g., fast motion and distractor interference. Trackers tend to lose the target object due to the limited search region or experience interference from distractors due to the excessive search region. Drawing inspiration from the pattern humans track an object, we propose a novel tracking paradigm, called Search Region Regulation Tracking (SRRT) that applies a small eyereach when the target is captured and zooms out the search field when the target is about to be lost. SRRT applies a proposed search region regulator to estimate an optimal search region dynamically for each frame, by which the tracker can flexibly respond to transient changes in the location of object occurrences. To adapt the object's appearance variation during online tracking, we further propose a locking-state determined updating strategy for reference frame updating. The proposed SRRT is concise without bells and whistles, yet achieves evident improvements and competitive results with other state-of-the-art trackers on eight benchmarks. On the large-scale LaSOT benchmark, SRRT improves SiamRPN++ and TransT with absolute gains of 4.6% and 3.1% in terms of AUC. The code and models will be released.
引用
收藏
页码:10551 / 10563
页数:13
相关论文
共 50 条
  • [1] Exploring Causal Relationships in Visual Object Tracking
    Lebeda, Karel
    Hadfield, Simon
    Bowden, Richard
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 3065 - 3073
  • [2] Exploring the Effects of Blur and Deblurring to Visual Object Tracking
    Guo, Qing
    Feng, Wei
    Gao, Ruijun
    Liu, Yang
    Wang, Song
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 1812 - 1824
  • [3] Velocity cues improve visual search and multiple object tracking
    Fencsik, David E.
    Urrea, Jessenia
    Place, Skyler S.
    Wolfe, Jeremy M.
    Horowitz, Todd S.
    VISUAL COGNITION, 2006, 14 (01) : 92 - 95
  • [4] MAT: Multianchor Visual Tracking With Selective Search Region
    Fang, Zhiwen
    Cao, Zhiguo
    Xiao, Yang
    Gong, Kaicheng
    Yuan, Junsong
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (07) : 7136 - 7150
  • [5] Exploring fusion strategies for accurate RGBT visual object tracking
    Tang, Zhangyong
    Xu, Tianyang
    Li, Hui
    Wu, Xiao-Jun
    Zhu, XueFeng
    Kittler, Josef
    INFORMATION FUSION, 2023, 99
  • [6] Mixing Tokens from Target and Search Regions for Visual Object Tracking
    Wanli X.
    Zhibin Z.
    Shenglei P.
    Kaihua Z.
    Shengyong C.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2024, 61 (02): : 460 - 469
  • [7] Visual Object Tracking Based on the Motion Prediction and Block Search in UAV Videos
    Sun, Lifan
    Li, Xinxiang
    Yang, Zhe
    Gao, Dan
    DRONES, 2024, 8 (06)
  • [8] VISUAL TRACKING OF OBJECT SILHOUETTES
    Boudoukh, Guy
    Leichter, Ido
    Rivlin, Ehud
    2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 3625 - 3628
  • [9] Visual object tracking: A survey
    Chen, Fei
    Wang, Xiaodong
    Zhao, Yunxiang
    Lv, Shaohe
    Niu, Xin
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2022, 222
  • [10] Visual tracking and object recognition
    Tannenbaum, A
    Yezzi, A
    Goldstein, A
    NONLINEAR CONTROL SYSTEMS 2001, VOLS 1-3, 2002, : 1539 - 1542