Preparation and investigation on down-conversion near infrared emission of Tb3+, Yb3+ co-doped Y2O3 transparent ceramics

被引:2
|
作者
Lin H. [1 ,2 ]
Zhou S. [1 ]
Hou X. [1 ,2 ]
Li Y. [1 ,2 ]
Li W. [1 ,2 ]
Teng H. [1 ,2 ]
Jia T. [1 ,2 ]
机构
[1] Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences
[2] Graduate University of Chinese Academy of Sciences
来源
Guangxue Xuebao/Acta Optica Sinica | 2010年 / 30卷 / 12期
关键词
Cooperative down-conversion emission; Energy transfer mechanisms; Materials; Near infrared; Transparent ceramics;
D O I
10.3788/AOS20103012.3547
中图分类号
学科分类号
摘要
Tb3+, Yb3+ codoped Y2O3 (mole fraction x=0.02, 0.05, 0.1) transparent ceramics of high transparency have been prepared by vacuum sintering and the down-conversion near infrared (NIR) emission has been demonstrated upon a 484 nm excitation. The dominant energy transfer mechanism is the cooperative down-conversion from 5D4 level of one Tb3+ ion to the 2F5/2 level of two Yb3+ ions. The suppression of Tb4+ during vacuum sintering and the suppression of Yb2+ due to the nature of Y2O3 lattice, together with the large energy gap between Tb3+:5D4 level and Tb4+-Yb2+ charge transfer state (CTS) and the low phonon energy of Y2O3 make the non-radiative influence from the CTS negligible. In addition, the contribution of Tb3+:5D4 → one Yb3+:2F5/2 (non-radiative) → Yb3+:2F7/2 (radiative) process to NIR emission should be little due to the large energy gap between Tb3+:5D4 level and low phonon energy of Y2O3.
引用
收藏
页码:3547 / 3551
页数:4
相关论文
共 21 条
  • [1] Yu R.J., Optics and solar energy, Acta Optica Sinica, 29, 7, pp. 1751-1755, (2009)
  • [2] Li H.H., Wang Q.K., Design of the back reflectors of thin-film silicon solar cells, Acta Sinica Quantum Optica, 15, 4, pp. 380-386, (2009)
  • [3] Trupke T., Green M.A., Wurfel P., Improving solar cell efficiencies by down-conversion of high-energy photons, J. Appl. Phys., 92, 3, pp. 1668-1674, (2002)
  • [4] Vergeer P., Vlugt T.J.H., Kox M.H.F., Et al., Quantum cutting by cooperative energy transfer in Yb<sub>x</sub>Y<sub>1-x</sub>PO<sub>4</sub>:Tb<sup>3+</sup>, Phys. Rev. B, 71, 1, (2005)
  • [5] Richards B.S., Luminescent layers for enhanced silicon solar cell performance: Down-conversion, Sol. Energy Mater. Sol. Cells, 90, 9, pp. 1189-1207, (2006)
  • [6] Richards B.S., Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers, Sol. Energy Mater. Sol. Cells, 90, 15, pp. 2329-2337, (2006)
  • [7] Chen D.Q., Wang Y.S., Near infrared quantum cutting in nano-structured glass ceramics, Laser & Optoelectronics Progress, 46, 2, (2009)
  • [8] Zhang Q.Y., Yang C.H., Pan Y.X., Et al., Cooperative quantum cutting in one-dimensional (Yb<sub>x</sub>Gd<sub>1-x</sub>)Al<sub>3</sub> (BO<sub>3</sub>)<sub>4</sub>:Tb<sup>3+</sup> nanorods, Appl. Phys. Lett., 90, 2, (2007)
  • [9] Zhang Q.Y., Yang C.H., Jiang Z.H., Et al., Concentration-dependent near-infrared quantum cutting in GdBO<sub>3</sub>:Tb<sup>3+</sup>, Yb<sup>3+</sup> nanophosphors, Appl. Phys. Lett., 90, 6, (2007)
  • [10] Zhang Q.Y., Yang G.F., Jiang Z.H., Cooperative downconversion in GdAl<sub>3</sub>(BO<sub>3</sub>)<sub>4</sub>:RE<sup>3+</sup>, Yb<sup>3+</sup> (RE=Pr, Tb, and Tm), Appl. Phys. Lett., 91, 5, (2007)