Incorporating spatial information in deep learning parameter estimation with application to the intravoxel incoherent motion model in diffusion-weighted MRI

被引:0
|
作者
Kaandorp, Misha P. T. [1 ,2 ,3 ,4 ,5 ]
Zijlstra, Frank [1 ,2 ]
Karimi, Davood [3 ]
Gholipour, Ali [3 ]
While, Peter T. [1 ,2 ]
机构
[1] St Olavs Univ Hosp, Dept Radiol & Nucl Med, Trondheim, Norway
[2] NTNU Norwegian Univ Sci & Technol, Dept Circulat & Med Imaging, Trondheim, Norway
[3] Harvard Med Sch, Boston Childrens Hosp, Dept Radiol, Boston, MA USA
[4] Univ Childrens Hosp Zurich, Ctr MR Res, Lenggstr 30, CH-8008 Zurich, Switzerland
[5] Univ Zurich, Zurich, Switzerland
关键词
Quantitative magnetic resonance imaging; Deep learning parameter estimation; Supervised attention models; Synthetic data generation; PERFUSION; IVIM; QUANTIFICATION;
D O I
10.1016/j.media.2024.103414
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In medical image analysis, the utilization of biophysical models for signal analysis offers valuable insights into the underlying tissue types and microstructural processes. In diffusion-weighted magnetic resonance imaging (DWI), a major challenge lies in accurately estimating model parameters from the acquired data due to the inherently low signal-to-noise ratio (SNR) of the signal measurements and the complexity of solving the ill-posed inverse problem. Conventional model fitting approaches treat individual voxels as independent. However, the tissue microenvironment is typically homogeneous in a local environment, where neighboring voxels may contain correlated information. To harness the potential benefits of exploiting correlations among signals in adjacent voxels, this study introduces a novel approach to deep learning parameter estimation that effectively incorporates relevant spatial information. This is achieved by training neural networks on patches of synthetic data encompassing plausible combinations of direct correlations between neighboring voxels. We evaluated the approach on the intravoxel incoherent motion (IVIM) model in DWI. We explored the potential of several deep learning architectures to incorporate spatial information using self-supervised and supervised learning. We assessed performance quantitatively using novel fractal-noise-based synthetic data, which provide ground truths possessing spatial correlations. Additionally, we present results of the approach applied to in vivo DWI data consisting of twelve repetitions from a healthy volunteer. We demonstrate that supervised training on larger patch sizes using attention models leads to substantial performance improvements over both conventional voxelwise model fitting and convolution-based approaches.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Deep learning how to fit an intravoxel incoherent motion model to diffusion-weighted MRI
    Barbieri, Sebastiano
    Gurney-Champion, Oliver J.
    Klaassen, Remy
    Thoeny, Harriet C.
    MAGNETIC RESONANCE IN MEDICINE, 2020, 83 (01) : 312 - 321
  • [2] Stroke assessment with intravoxel incoherent motion diffusion-weighted MRI
    Suo, Shiteng
    Cao, Mengqiu
    Zhu, Wanqiu
    Li, Lei
    Li, Jun
    Shen, Fei
    Zu, Jinyan
    Zhou, Zien
    Zhuang, Zhiguo
    Qu, Jianxun
    Chen, Zengai
    Xu, Jianrong
    NMR IN BIOMEDICINE, 2016, 29 (03) : 320 - 328
  • [3] Intravoxel Incoherent Motion in Body Diffusion-Weighted MRI: Reality and Challenges
    Koh, Dow-Mu
    Collins, David J.
    Orton, Matthew R.
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2011, 196 (06) : 1351 - 1361
  • [4] MRI-based estimation of liver function by intravoxel incoherent motion diffusion-weighted imaging
    Zhang, Jing
    Guo, Yihao
    Tan, Xiangliang
    Zheng, Zeyu
    He, Mengqi
    Xu, Jun
    Mei, Yingjie
    Zhang, Jiajun
    Zhao, Xixi
    Wang, Chunhong
    Feng, Yanqiu
    Chan, Queenie
    Wu, Yuankui
    Xu, Yikai
    MAGNETIC RESONANCE IMAGING, 2016, 34 (08) : 1220 - 1225
  • [5] Reliable estimation of brain intravoxel incoherent motion parameters using denoised diffusion-weighted MRI
    Huang, Hsuan-Ming
    NMR IN BIOMEDICINE, 2020, 33 (04)
  • [6] Application of intravoxel incoherent motion diffusion-weighted imaging in hepatocellular carcinoma
    Yi Zhou
    Jing Zheng
    Cui Yang
    Juan Peng
    Ning Liu
    Lin Yang
    Xiao-Ming Zhang
    World Journal of Gastroenterology, 2022, (27) : 3334 - 3345
  • [7] Application of intravoxel incoherent motion diffusion-weighted imaging in hepatocellular carcinoma
    Zhou, Yi
    Zheng, Jing
    Yang, Cui
    Peng, Juan
    Liu, Ning
    Yang, Lin
    Zhang, Xiao-Ming
    WORLD JOURNAL OF GASTROENTEROLOGY, 2022, 28 (27) : 3334 - 3345
  • [8] Diffusion-weighted MRI and intravoxel incoherent motion model for diagnosis of pediatric solid abdominal tumors
    Meeus, Emma M.
    Zarinabad, Niloufar
    Manias, Karen A.
    Novak, Jan
    Rose, Heather E. L.
    Dehghani, Hamid
    Foster, Katharine
    Morland, Bruce
    Peet, Andrew C.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2018, 47 (06) : 1475 - 1486
  • [9] Evaluation of Hepatic Tumors Using Intravoxel Incoherent Motion Diffusion-Weighted MRI
    Wang, Mingjie
    Li, Xudan
    Zou, Jianxun
    Chen, Xugao
    Chen, Shuyan
    Xiang, Wanqing
    MEDICAL SCIENCE MONITOR, 2016, 22 : 702 - 709
  • [10] A comparison of fitting algorithms for diffusion-weighted MRI data analysis using an intravoxel incoherent motion model
    Roberta Fusco
    Mario Sansone
    Antonella Petrillo
    Magnetic Resonance Materials in Physics, Biology and Medicine, 2017, 30 : 113 - 120