Multi-Objective Evolutionary Algorithm Based on Decomposition With Orthogonal Experimental Design

被引:0
|
作者
He, Maowei [1 ]
Wang, Zhixue [2 ]
Chen, Hanning [1 ]
Cao, Yang [3 ]
Ma, Lianbo [4 ]
机构
[1] Tiangong Univ, Sch Comp Sci & Technol, Tianjin, Peoples R China
[2] Tiangong Univ, Sch Control Sci & Engn, Tianjin, Peoples R China
[3] China Med Univ, Sch Intelligent Med, Shenyang, Peoples R China
[4] Northeastern Univ, Coll Software, Shenyang, Peoples R China
关键词
indicator; irregular Pareto fronts; multi-objective evolutionary optimisation algorithm; orthogonal experimental design; selection operation; MANY-OBJECTIVE OPTIMIZATION; NONDOMINATED SORTING APPROACH; GENETIC ALGORITHM; MOEA/D; SELECTION;
D O I
10.1111/exsy.13802
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-objective evolutionary optimisation algorithms (MOEAs) have become a widely adopted way of solving the multi-objective optimisation problems (MOPs). The decomposition-based MOEAs demonstrate a promising performance for solving regular MOPs. However, when handling the irregular MOPs, the decomposition-based MOEAs cannot offer a convincing performance because no intersection between weight vector and the Pareto Front (PF) may lead to the same optimal solution assigned to the different weight vectors. To solve this problem, this paper proposes an MOEA based on decomposition with the orthogonal experimental design (MOEA/D-OED) that involves the selection operation, Orthogonal Experimental Design (OED) operation, and adjustment operation. The selection operation is to judge the unpromising weight vectors based on the history data of relative reduction values and convergence degree. The OED method based on the relative reduction function could make an explicit guidance for removing the worthless weight vectors. The adjustment operation brings in an estimation indicator of both diversity and convergence for adding new weight vectors into the interesting regions. To verify the versatility of the proposed MOEA/D-OED, 26 test problems with various PFs are evaluated in this paper. Empirical results have demonstrated that the proposed MOEA/D-OED outperforms eight representative MOEAs on MOPs with various types of PFs, showing promising versatility. The proposed algorithm shows highly competitive performance on all the various MOPs.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] A dynamic multi-objective evolutionary algorithm based on an orthogonal design
    Zeng, Sang-you
    Chen, Guang
    Zheng, Liang
    Shi, Hui
    de Garis, Hugo
    Ding, Lixin
    Kang, Lishan
    2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 573 - +
  • [2] A new orthogonal evolutionary algorithm based on decomposition for multi-objective optimization
    Dai, Cai
    Wang, Yuping
    Yue, Wei
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2015, 66 (10) : 1686 - 1698
  • [3] A Clustering Multi-objective Evolutionary Algorithm Based on Orthogonal and Uniform Design
    Wang, Yuping
    Dang, Chuangyin
    Li, Hecheng
    Han, Lixia
    Wei, Jingxuan
    2009 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-5, 2009, : 2927 - +
  • [4] A Decomposition Based Evolutionary Algorithm with Uniform Design for Multi-objective Optimization
    Dai, Cai
    Lei, Xiujuan
    Ding, Yulian
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 2484 - 2489
  • [5] A Multi-objective Evolutionary Algorithm based on Decomposition for Constrained Multi-objective Optimization
    Martinez, Saul Zapotecas
    Coello, Carlos A. Coello
    2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 429 - 436
  • [6] An improvement decomposition-based multi-objective evolutionary algorithm with uniform design
    Dai, Cai
    Lei, Xiujuan
    KNOWLEDGE-BASED SYSTEMS, 2017, 125 : 108 - 115
  • [7] Decomposition based Multi-Objective Evolutionary Algorithm in XCS for Multi-Objective Reinforcement Learning
    Cheng, Xiu
    Browne, Will N.
    Zhang, Mengjie
    2018 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2018, : 622 - 629
  • [8] A Multi-Objective Evolutionary Algorithm Based on Bilayered Decomposition for Constrained Multi-Objective Optimization
    Yasuda, Yusuke
    Kumagai, Wataru
    Tamura, Kenichi
    Yasuda, Keiichiro
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2025, 20 (02) : 244 - 262
  • [9] An orthogonal multi-objective evolutionary algorithm for multi-objective optimization problems with constraints
    Zeng, SY
    Kang, LSS
    Ding, LXX
    EVOLUTIONARY COMPUTATION, 2004, 12 (01) : 77 - 98
  • [10] Decomposition-Based Multi-Objective Evolutionary Algorithm Design Under Two Algorithm Frameworks
    Pang, Lie Meng
    Ishibuchi, Hisao
    Shang, Ke
    IEEE ACCESS, 2020, 8 : 163197 - 163208