Solution of the intersection problem for latin squares of different orders

被引:0
|
作者
Dukes, Peter [1 ]
Howell, Jared [1 ]
机构
[1] Mathematics and Statistics J University of Victoria, Victoria, BC V8W 3R4, Canada
关键词
D O I
暂无
中图分类号
O144 [集合论]; O157 [组合数学(组合学)];
学科分类号
070104 ;
摘要
引用
收藏
页码:289 / 298
相关论文
共 50 条
  • [1] The Orthogonality Spectrum for Latin Squares of Different Orders
    Peter Dukes
    Jared Howell
    Graphs and Combinatorics, 2013, 29 : 71 - 78
  • [2] The Orthogonality Spectrum for Latin Squares of Different Orders
    Dukes, Peter
    Howell, Jared
    GRAPHS AND COMBINATORICS, 2013, 29 (01) : 71 - 78
  • [3] The three-way intersection problem for latin squares
    Adams, P
    Billington, EJ
    Bryant, DE
    Mahmoodian, ES
    DISCRETE MATHEMATICS, 2002, 243 (1-3) : 1 - 19
  • [4] The disjoint m-flower intersection problem for latin squares
    Lefevre, James G.
    McCourt, Thomas A.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [5] On the intersection problem for Steiner triple systems of different orders
    Danziger, Peter
    Dukes, Peter
    Griggs, Terry
    Mendelsohn, Eric
    GRAPHS AND COMBINATORICS, 2006, 22 (03) : 311 - 329
  • [6] On the Intersection Problem for Steiner Triple Systems of Different Orders
    Peter Danziger
    Peter Dukes
    Terry Griggs
    Eric Mendelsohn
    Graphs and Combinatorics, 2006, 22 : 311 - 329
  • [7] ON THE SPECTRUM OF r-ORTHOGONAL LATIN SQUARES OF DIFFERENT ORDERS
    Amjadi, H.
    Soltankhah, N.
    Shajarisales, N.
    Tahvilian, M.
    TRANSACTIONS ON COMBINATORICS, 2016, 5 (02) : 41 - 51
  • [8] Quasi-embeddings and intersections of latin squares of different orders
    Dukes, Peter
    Mendelsohn, Eric
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2009, 43 : 197 - 209
  • [9] A SOLUTION TO THE EMBEDDING PROBLEM FOR PARTIAL IDEMPOTENT LATIN SQUARES
    ANDERSEN, LD
    HILTON, AJW
    RODGER, CA
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1982, 26 (AUG): : 21 - 27
  • [10] Latin squares with disjoint subsquares of two orders
    Kuhl, Jaromy
    Schroeder, Michael William
    JOURNAL OF COMBINATORIAL DESIGNS, 2018, 26 (05) : 219 - 236