Region-based semi-supervised clustering image segmentation

被引:0
|
作者
School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou Jiangsu 221116, China [1 ]
不详 [2 ]
机构
来源
关键词
Compilation and indexing terms; Copyright 2025 Elsevier Inc;
D O I
2011 7th International Conference on Natural Computation, ICNC 2011
中图分类号
学科分类号
摘要
Clustering algorithms - Iterative methods
引用
收藏
相关论文
共 50 条
  • [1] Semi-supervised clustering: Application to image segmentation
    Figueiredo, Mario A. T.
    ADVANCES IN DATA ANALYSIS, 2007, : 39 - 50
  • [2] Semi-supervised image segmentation by parametric distributional clustering
    Hermes, L
    Buhmann, JM
    ENERGY MINIMIZATION METHODS IN COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 2003, 2683 : 229 - 245
  • [3] Brain image segmentation using semi-supervised clustering
    Saha, Sriparna
    Alok, Abhay Kumar
    Ekbal, Asif
    EXPERT SYSTEMS WITH APPLICATIONS, 2016, 52 : 50 - 63
  • [4] Semi-supervised clustering for MR brain image segmentation
    Portela, Nara M.
    Cavalcanti, George D. C.
    Ren, Tsang Ing
    EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (04) : 1492 - 1497
  • [5] Textile Image Segmentation Based on Semi-supervised Clustering and Bayes Decision
    Bao Xiao-min
    Peng Xiao
    Wang Ya-ming
    Cao Zuo-bao
    2009 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, VOL III, PROCEEDINGS, 2009, : 559 - 562
  • [6] Semi-supervised Image Segmentation
    Lazarova, Gergana Angelova
    ARTIFICIAL INTELLIGENCE: METHODOLOGY, SYSTEMS, AND APPLICATIONS, 2014, 8722 : 59 - 68
  • [7] Semi-supervised statistical region refinement for color image segmentation
    Nock, R
    Nielsen, F
    PATTERN RECOGNITION, 2005, 38 (06) : 835 - 846
  • [8] SEMI-SUPERVISED IMAGE SEGMENTATION BY NEAREST NEIGHBOR REGION MERGING
    Peng, B.
    Simfukwe, M.
    Li, T.
    Yang, Y.
    UNCERTAINTY MODELLING IN KNOWLEDGE ENGINEERING AND DECISION MAKING, 2016, 10 : 1143 - 1148
  • [9] MR Brain Image Segmentation based on Unsupervised and Semi-Supervised Fuzzy Clustering Methods
    Al-Dmour, Hayat
    Al-Ani, Ahmed
    2016 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2016, : 631 - 637
  • [10] SAR image segmentation with entropy ranking based adaptive semi-supervised spectral clustering
    Zhang, Xiangrong
    Yang, Jie
    Hou, Biao
    Jiao, Licheng
    SAR IMAGE ANALYSIS, MODELING, AND TECHNIQUES X, 2010, 7829