Layout optimization and mechanism analysis of hybrid active and passive micro-perforated panel absorber for suppressing enclosed sound field

被引:0
|
作者
Ma, Xiyue [1 ]
Liu, Tao [1 ]
Wang, Lei [2 ]
Chen, Kean [1 ]
机构
[1] Northwestern Polytech Univ, Sch Marine Sci & Technol, Xian 710072, Peoples R China
[2] Xian Univ Architecture & Technol, Sch Sci, Xian 710055, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Micro-perforated panel absorber; Low frequency sound absorption; Enclosed sound field; Active control; Layout optimization; MULTILAYER MICROPERFORATED PANEL; ABSORPTION; TRANSMISSION;
D O I
10.1016/j.apacoust.2024.110422
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper investigates the sound absorption performance of hybrid active and passive micro-perforated panel absorber (MPPA) for suppressing the enclosed sound field. The hybrid MPPA is strongly coupled with the enclosed sound field so that it serves as a sound energy dissipating component, rather than a uniform absorption boundary. The in situ sound absorption is highly dependent on its layout on the boundary of the enclosed space, which is worth exploring in depth for aiding in its practical application. The fully coupled enclosure-hybrid MPPA model is established using modal analysis approach. The evolution mechanism of passive and active sound absorption performance in various layout situations are explored both for rectangular and irregular enclosed space, thus providing guidance for layout optimization. Simulations show that the energy dissipation of partial MPPA coverage with appropriate layout is better than the full coverage case. The dissipation when partial covered MPPA locating at the corner is more significant than that at the middle position for rectangular enclosed space. The weakened coupling effects between the enclosure and the MPPA cavity mainly result in the significant dissipation on resonances of the coupled system. Since the irregular cavity modes significantly weaken the above coupling effects, the dissipation of full coverage case is the best for irregular enclosure. Applying active control to suppress the sound field of the MPPA cavity can generate pressure difference across the MPP, which dissipates energy of the undamped resonances of the coupled system to a minimum until a new equilibrium state is reached. The pressure release strategy is applicable both for full and partial coverage cases. The partial covered MPPA needs to be located in the corner to guarantee the control performance of such strategy, meaning that active control requires the cooperation of passive control to achieve better performance.
引用
收藏
页数:17
相关论文
共 45 条
  • [1] Low frequency sound absorption performance of large sized active micro-perforated panel absorber in free field
    Lei, Wang
    Xi-Yue, Ma
    Ke-An, Chen
    Tao, Liu
    ACTA PHYSICA SINICA, 2023, 72 (06)
  • [2] Broadband Sound Absorption Technique Using Micro-perforated Panel Absorber with Perforated Extended Panel
    Agarwalla, Deepak Kumar
    Mohanty, Amiya Ranjan
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2024, 12 (01) : 495 - 511
  • [3] Broadband Sound Absorption Technique Using Micro-perforated Panel Absorber with Perforated Extended Panel
    Deepak Kumar Agarwalla
    Amiya Ranjan Mohanty
    Journal of Vibration Engineering & Technologies, 2024, 12 : 495 - 511
  • [4] Absorption of oblique incidence sound by a finite micro-perforated panel absorber
    Yang, Cheng
    Cheng, Li
    Pan, Jie
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2013, 133 (01): : 201 - 209
  • [5] Optimization design and analysis of honeycomb micro-perforated plate broadband sound absorber
    Yan, Shanlin
    Wu, Jinwu
    Chen, Jie
    Xiong, Yin
    Mao, Qibo
    Zhang, Xiang
    APPLIED ACOUSTICS, 2022, 186
  • [6] Sensitivity analysis of micro-perforated panel absorber models at high sound pressure levels
    Laly, Zacharie
    Atalla, Noureddine
    Meslioui, Sid-Ali
    El Bikri, Khalid
    APPLIED ACOUSTICS, 2019, 156 : 7 - 20
  • [7] Sound absorption and insulation performance of a finite cylindrical micro-perforated panel absorber
    Xu, He
    Kong, Deyi
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2022, 152 (04): : 2382 - 2397
  • [8] Investigation of broadband sound absorption of smart micro-perforated panel (MPP) absorber
    Liu, Xiang
    Wang, Chunqi
    Zhang, Yumin
    Huang, Lixi
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2021, 199
  • [9] Passive and active low frequency sound absorption performance of the finite and large sized micro-perforated panel absorber on oblique incidence condition
    Ma, Xiyue
    Wang, Lei
    Chen, Kean
    Tian, Xuhua
    JOURNAL OF SOUND AND VIBRATION, 2023, 547
  • [10] Optimization of micro-perforated sound absorber using Particle Swarm Optimization (PSO)
    Tan, W. H.
    Haslina, R.
    Lim, E. A.
    Chuah, H. G.
    6TH INTERNATIONAL CONFERENCE ON APPLICATIONS AND DESIGN IN MECHANICAL ENGINEERING, 2019, 670