A theory of Monte Carlo visibility sampling

被引:0
|
作者
Department of Electrical Engineering and Computer Science, 525 Soda Hall, University of California, Berkeley, CA 94720, United States [1 ]
不详 [2 ]
不详 [3 ]
不详 [4 ]
机构
来源
关键词
Compilation and indexing terms; Copyright 2025 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
Rendering (computer graphics) - Jitter - Sampling - Monte Carlo methods - Fourier analysis - Pixels - Light sources
引用
收藏
相关论文
共 50 条
  • [1] A Theory of Monte Carlo Visibility Sampling
    Ramamoorthi, Ravi
    Anderson, John
    Meyer, Mark
    Nowrouzezahrai, Derek
    ACM TRANSACTIONS ON GRAPHICS, 2012, 31 (05):
  • [2] OPTIMIZED NESTED MARKOV CHAIN MONTE CARLO SAMPLING: THEORY
    Coe, Joshua D.
    Sewell, Thomas D.
    Shaw, M. Sam
    SHOCK COMPRESSION OF CONDENSED MATTER - 2009, PTS 1 AND 2, 2009, 1195 : 525 - +
  • [3] Concepts in Monte Carlo sampling
    Tartero, Gabriele
    Krauth, Werner
    AMERICAN JOURNAL OF PHYSICS, 2024, 92 (01) : 65 - 77
  • [4] Monte Carlo Sampling with Hierarchical Move Sets: POSH Monte Carlo
    Nilmeier, Jerome
    Jacobson, Matthew P.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2009, 5 (08) : 1968 - 1984
  • [5] A review of Monte Carlo and quasi-Monte Carlo sampling techniques
    Hung, Ying-Chao
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2024, 16 (01)
  • [6] A Monte Carlo examination of properties of ordinal test theory based on item sampling
    Donoghue, JR
    INTERNATIONAL JOURNAL OF PSYCHOLOGY, 1996, 31 (3-4) : 5453 - 5453
  • [7] Theory of Monte Carlo sampling-based alopex algorithms for neural networks
    Chen, Z
    Haykin, S
    Becker, S
    2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL V, PROCEEDINGS: DESIGN AND IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS INDUSTRY TECHNOLOGY TRACKS MACHINE LEARNING FOR SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING SIGNAL PROCESSING FOR EDUCATION, 2004, : 501 - 504
  • [8] Quasi-Monte Carlo sampling to improve the efficiency of Monte Carlo EM
    Jank, W
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2005, 48 (04) : 685 - 701
  • [9] Differential sampling for the Monte Carlo practitioner
    Peplow, DE
    Verghese, K
    PROGRESS IN NUCLEAR ENERGY, 2000, 36 (01) : 39 - 75
  • [10] Ellipse sampling for Monte Carlo applications
    Wang, CM
    Hwang, NC
    Tsai, YY
    Chang, CH
    ELECTRONICS LETTERS, 2004, 40 (01) : 21 - 22