Influence of the total number of the ablated particles on their distribution of density and velocity

被引:0
|
作者
Ding X. [1 ]
Fu G. [1 ]
Liang W. [1 ]
Chu L. [1 ]
Deng Z. [1 ]
Wang Y. [1 ]
机构
[1] College of Physics Science and Technology, Hebei University, Baoding
来源
Zhongguo Jiguang/Chinese Journal of Lasers | 2010年 / 37卷 / 04期
关键词
Density distribution; High-density peak; Laser technique; Monte Carlo simulation; Velocity distribution;
D O I
10.3788/CJL20103704.1127
中图分类号
学科分类号
摘要
The influence of the total number of Si particles on the spatial density distribution of the particles(Si and He) and the velocity distribution of the Si-particles is investigated with Monte Carlo simulation. The results indicate that the maximum distance of high density peak from the target and the width of velocity distribution increase, and the time of reaching the maximum distance from the target firstly increases and then decreases with the increase of number of Si-particles. The splitting of the velocity is observed at the vicinity of 1.01 × 1015 and 1.01 × 1016 Si-particles.
引用
收藏
页码:1127 / 1131
页数:4
相关论文
共 17 条
  • [1] Hirasawa M., Orii T., Seto T., Size-dependent crystallization of Si nanoparticles, Appl. Phys. Lett., 88, 9, (2006)
  • [2] Chu L., Lu L., Wang Y., Et al., Size-dispersal of Si nanoparticles prepared by pulsed laser ablation, Chinese J. Lasers, 34, 4, pp. 555-558, (2007)
  • [3] Wang Y.L., Deng Z.C., Fu G.S., Et al., The average size of Si nanoparticles prepared by pulsed laser ablation in the gas mixture of He/Ar, Ne/Ar or He/Ne, Thin Solid Films, 515, 4, pp. 1897-1900, (2006)
  • [4] Fu G.S., Wang Y.L., Chu L.Z., Et al., The size distribution of Si nanoparticles prepared by pulsed-laser ablation in pure He, Ar or Ne gas, Europhys. Lett., 69, 5, pp. 758-762, (2005)
  • [5] Wang Y., Lu L., Yan C., Et al., The laser ablated deposition of Si nanocrystalline film with narrow photoluminescence peak, Acta Physica Sinica, 54, 12, pp. 5738-5742, (2005)
  • [6] Lowndes D.H., Geohegan D.B., Puretzky A.A., Et al., Synthesis of novel thin-film materials by pulsed laser deposition, Science, 273, 5277, pp. 898-903, (1996)
  • [7] Le H.C., Zeitoun D.E., Parisse J.D., Et al., Modeling of gas dynamics for laser-generated plasma: Propagation into low-pressure gases, Phys. Rev. E, 62, 3, pp. 4152-4161, (2000)
  • [8] Kools J.C.S., Monte Carlo simulations of transport of laser ablation atoms in a diluted gas, J. Appl. Phys., 74, 10, pp. 6401-6405, (1993)
  • [9] Wang Y.L., Chu L.Z., Li Y.L., Et al., Dynamical transportation of Si particles produced by pulsed laser ablation in the mixture of two inert gases, Micro & Nano Lett., 4, 1, pp. 39-43, (2009)
  • [10] Wood R.F., Chen K.R., Leboeuf J.N., Et al., Dynamics of plume propagation and splitting pulsed-laser ablation, Phys. Rew. Lett., 79, 8, pp. 1571-1574, (1997)