Liquid-State NMR Quantum Computing

被引:0
|
作者
Vandersypen L.M.K. [1 ]
Chuang I.L. [2 ]
Suter D. [3 ]
机构
[1] TU Delft, Delft
[2] Massachusetts Institute of Technology, Cambridge, MA
[3] TU Dortmund, Dortmund
来源
eMagRes | 2010年 / 2010卷
关键词
D O I
10.1002/9780470034590.emrstm0272.pub2
中图分类号
学科分类号
摘要
Processing of digital information has progressed at an enormous speed over the last few decades and thus become an indispensable resource. Still, for some computational problems, no efficient algorithms are known for today's computers. If quantum mechanical systems are used instead of classical ones, some of these problems become solvable, with an exponential speedup over classical computers. Many different physical systems are being considered for implementing quantum algorithms, but so far, spins have proved most successful for storing and processing digital information. This feat may be tracked to two different causes: (i) spins are the only naturally occurring two-level systems and are therefore ideal qubits. (ii) magnetic resonance, in particular NMR, has developed a wide range of sophisticated techniques for coherent control of quantum systems. This article provides an introduction into the basic ideas that allow one to use quantum systems for computational purposes and discusses a few examples where NMR has been used for this purpose. © 2010 John Wiley & Sons, Ltd.
引用
收藏
相关论文
共 50 条
  • [1] Liquid-state NMR of Fluoropolymers
    Rinaldi, Peter L.
    Baughman, Jessi
    Li, Linlin
    Li, Xiaohong
    Paudel, Liladhar
    Twum, Eric B.
    Zhang, Bo
    McCord, Elizabeth F.
    Wyzgoski, Faith J.
    EMAGRES, 2013, 2 (01): : 109 - 147
  • [2] Liquid-state NMR simulations of quantum many-body problems
    Negrevergne, C
    Somma, R
    Ortiz, G
    Knill, E
    Laflamme, R
    PHYSICAL REVIEW A, 2005, 71 (03)
  • [3] LIQUID-STATE NMR QUANTUM COMPUTER: WORKING PRINCIPLE AND SOME EXAMPLES
    Kondo, Yasushi
    MOLECULAR REALIZATIONS OF QUANTUM COMPUTING 2007, 2009, 2 : 1 - 52
  • [4] Robust quantum information processing with techniques from liquid-state NMR
    Jones, JA
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 361 (1808): : 1429 - 1440
  • [5] Optical detection of liquid-state NMR
    I. M. Savukov
    S.-K. Lee
    M. V. Romalis
    Nature, 2006, 442 : 1021 - 1024
  • [6] Liquid-State NMR Analysis of Nanocelluloses
    King, Alistair W. T.
    Makela, Valtteri
    Kedzior, Stephanie A.
    Laaksonen, Tiina
    Partl, Gabriel J.
    Heikkinen, Sami
    Koskela, Harri
    Heikkinen, Harri A.
    Holding, Ashley J.
    Cranston, Emily D.
    Kilpelainen, Ilkka
    BIOMACROMOLECULES, 2018, 19 (07) : 2708 - 2720
  • [7] Optical detection of liquid-state NMR
    Savukov, I. M.
    Lee, S. -K.
    Romalis, M. V.
    NATURE, 2006, 442 (7106) : 1021 - 1024
  • [8] Homonuclear decoupling for liquid-state NMR
    Koroleva, Van D. M.
    Khaneja, Navin
    JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (09):
  • [9] A study of quantum error correction by geometric algebra and liquid-state NMR spectroscopy
    Sharf, Y
    Cory, DG
    Somaroo, SS
    Havel, TF
    Knill, E
    Laflamme, R
    Zurek, WH
    MOLECULAR PHYSICS, 2000, 98 (17) : 1347 - 1363
  • [10] Geometric quantum gates in liquid-state NMR based on a cancellation of dynamical phases
    Ota, Yukihiro
    Goto, Yoshito
    Kondo, Yasushi
    Nakahara, Mikio
    PHYSICAL REVIEW A, 2009, 80 (05):