Polyp Segmentation via Semantic Enhanced Perceptual Network

被引:0
|
作者
Wang, Tong [1 ]
Qi, Xiaoming [1 ]
Yang, Guanyu [1 ]
机构
[1] Southeast Univ, Key Lab New Generat Artificial Intelligence Techno, Minist Educ, Nanjing 210096, Jiangsu, Peoples R China
关键词
Semantics; Kernel; Feature extraction; Convolution; Shape; Image segmentation; Image color analysis; Polyp segmentation; semantic perception; multi-scale learning; feature fusion;
D O I
10.1109/TCSVT.2024.3432882
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Accurate polyp segmentation is crucial for precise diagnosis and prevention of colorectal cancer. However, precise polyp segmentation still faces challenges, mainly due to the similarity of polyps to their surroundings in terms of color, shape, texture, and other aspects, making it difficult to learn accurate semantics. To address this issue, we propose a novel semantic enhanced perceptual network (SEPNet) for polyp segmentation, which enhances polyp semantics to guide the exploration of polyp features. Specifically, we propose the Polyp Semantic Enhancement (PSE) module, which utilizes a coarse segmentation map as a basis and selects kernels to extract semantic information from corresponding regions, thereby enhancing the discriminability of polyp features highly similar to the background. Furthermore, we design a plug-and-play semantic guidance structure for the PSE, leveraging accurate semantic information to guide scale perception and context fusion, thereby enhancing feature discriminability. Additionally, we propose a Multi-scale Adaptive Perception (MAP) module, which enhances the flexibility of receptive fields by increasing the interaction of information between neighboring receptive field branches and dynamically adjusting the size of the perception domain based on the contribution of each scale branch. Finally, we construct the Contextual Representation Calibration (CRC) module, which calibrates contextual representations by introducing an additional branch network to supplement details. Extensive experiments demonstrate that SEPNet outperforms 15 SOTA methods on five challenging datasets across six standard metrics.
引用
收藏
页码:12594 / 12607
页数:14
相关论文
共 50 条
  • [1] HSNet: A hybrid semantic network for polyp segmentation
    Zhang, Wenchao
    Fu, Chong
    Zheng, Yu
    Zhang, Fangyuan
    Zhao, Yanli
    Sham, Chiu-Wing
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 150
  • [2] An Edge-Enhanced Network for Polyp Segmentation
    Tong, Yao
    Chen, Ziqi
    Zhou, Zuojian
    Hu, Yun
    Li, Xin
    Qiao, Xuebin
    BIOENGINEERING-BASEL, 2024, 11 (10):
  • [3] Adaptive Fusion Boundary-Enhanced Multilayer Perceptual Network (FBAIM-Net) for Enhanced Polyp Segmentation in Medical Imaging
    Gao, Fanyuyang
    Fu, Hongjin
    Wu, Xin
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING-ICANN 2024, PT VIII, 2024, 15023 : 179 - 188
  • [4] Semantic Polyp Generation for Improving Polyp Segmentation Performance
    Song, Hun
    Shin, Younghak
    JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2024, 44 (02) : 280 - 292
  • [5] Progressive CNN-transformer semantic compensation network for polyp segmentation
    Li, Daxiang
    Li, Denghui
    Liu, Ying
    Tang, Yao
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2024, 32 (16): : 2523 - 2536
  • [6] SEFANet: Semantic enhanced with feature alignment network for semantic segmentation
    Wang, Dakai
    An, Wenhao
    Ma, Jianxin
    Wang, Li
    DIGITAL SIGNAL PROCESSING, 2024, 153
  • [7] A multi-scale perceptual polyp segmentation network based on boundary guidance
    Lu, Lu
    Chen, Shuhan
    Tang, Haonan
    Zhang, Xinfeng
    Hu, Xuelong
    IMAGE AND VISION COMPUTING, 2023, 138
  • [8] Enhanced Feature Pyramid Network for Semantic Segmentation
    Ye, Mucong
    Ouyang, Jingpeng
    Chen, Ge
    Zhang, Jing
    Yu, Xiaogang
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 3209 - 3216
  • [9] Convolutional Neural Network for Automated Colorectal Polyp Semantic Segmentation on Colonoscopy Frames
    Benhida, Hamza
    Souadi, Meryem
    El Ansari, Mohamed
    2022 9TH INTERNATIONAL CONFERENCE ON WIRELESS NETWORKS AND MOBILE COMMUNICATIONS, WINCOM, 2022, : 136 - 140
  • [10] Localization-Enhanced Voting-based Ensemble of Semantic Segmentation Models for Cervical Polyp Segmentation
    Serban, Norbert
    Harangi, Balazs
    2023 IEEE 36TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS, 2023, : 712 - 715