Transformer RGBT Tracking With Spatio-Temporal Multimodal Tokens

被引:3
|
作者
Sun, Dengdi [1 ,2 ,3 ]
Pan, Yajie [4 ]
Lu, Andong [4 ]
Li, Chenglong [5 ]
Luo, Bin [4 ]
机构
[1] Anhui Univ, Sch Artificial Intelligence, Key Lab Intelligent Comp & Signal Proc, Minist Educ, Hefei 230601, Peoples R China
[2] Jianghuai Adv Technol Ctr, Hefei 230000, Peoples R China
[3] Hefei Comprehens Natl Sci Ctr, Inst Artificial Intelligence, Hefei 230026, Peoples R China
[4] Anhui Univ, Sch Comp Sci & Technol, Anhui Prov Key Lab Multimodal Cognit Computat, Hefei 230601, Peoples R China
[5] Anhui Univ, Sch Artificial Intelligence, Key Lab Intelligent Comp & Signal Proc, Minist Educ,Anhui Prov Key Lab Secur Artificial I, Hefei 230601, Peoples R China
基金
中国国家自然科学基金;
关键词
RGBT tracking; transformer; cross-modal interaction; spatio-temporal multimodal tokens; NETWORK;
D O I
10.1109/TCSVT.2024.3425455
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Many RGBT tracking researches primarily focus on modal fusion design, while overlooking the effective handling of target appearance changes. While some approaches have introduced historical frames or fuse and replace initial templates to incorporate temporal information, they have the risk of disrupting the original target appearance and accumulating errors over time. To alleviate these limitations, we propose a novel Transformer RGBT tracking approach, which mixes spatio-temporal multimodal tokens from the static multimodal templates and multimodal search regions in Transformer to handle target appearance changes, for robust RGBT tracking. We introduce independent dynamic template tokens to interact with the search region, embedding temporal information to address appearance changes, while also retaining the involvement of the initial static template tokens in the joint feature extraction process to ensure the preservation of the original reliable target appearance information that prevent deviations from the target appearance caused by traditional temporal updates. We also use attention mechanisms to enhance the target features of multimodal template tokens by incorporating supplementary modal cues, and make the multimodal search region tokens interact with multimodal dynamic template tokens via attention mechanisms, which facilitates the conveyance of multimodal-enhanced target change information. Our module is inserted into the transformer backbone network and inherits joint feature extraction, search-template matching, and cross-modal interaction. Extensive experiments on three RGBT benchmark datasets show that the proposed approach maintains competitive performance compared to other state-of-the-art tracking algorithms while running at 39.1 FPS. The project-related materials are available at: https://github.com/yinghaidada/STMT.
引用
收藏
页码:12059 / 12072
页数:14
相关论文
共 50 条
  • [1] Learning Spatio-Temporal Transformer for Visual Tracking
    Yan, Bin
    Peng, Houwen
    Fu, Jianlong
    Wang, Dong
    Lu, Huchuan
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 10428 - 10437
  • [2] Learning a multimodal feature transformer for RGBT tracking
    Shi, Huiwei
    Mu, Xiaodong
    Shen, Danyao
    Zhong, Chengliang
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (SUPPL 1) : 239 - 250
  • [3] DepMSTAT: Multimodal Spatio-Temporal Attentional Transformer for Depression Detection
    Tao, Yongfeng
    Yang, Minqiang
    Li, Huiru
    Wu, Yushan
    Hu, Bin
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (07) : 2956 - 2966
  • [4] Spatio-temporal hierarchical feature transformer for UAV object tracking
    Zhu, Fuzhen
    Cui, Jingyi
    Dou, Kaiqi
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 204 : 442 - 452
  • [5] Memory Prompt for Spatio-Temporal Transformer Visual Object Tracking
    Xu T.
    Wu X.
    Zhu X.
    Kittler J.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (08): : 1 - 6
  • [6] Spatio-temporal Multimodal Mean
    Azmat, Shoaib
    Wills, Linda
    Wills, Scott
    2014 IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS AND INTERPRETATION (SSIAI 2014), 2014, : 81 - 84
  • [7] IAMTrack: interframe appearance and modality tokens propagation with temporal modeling for RGBT tracking
    Shi, Huiwei
    Mu, Xiaodong
    He, Hao
    Zhong, Chengliang
    Zhang, Bo
    Zhao, Peng
    APPLIED INTELLIGENCE, 2025, 55 (07)
  • [8] STMT: Spatio-temporal memory transformer for multi-object tracking
    Gu, Songbo
    Ma, Jianxin
    Hui, Guancheng
    Xiao, Qiyang
    Shi, Wentao
    APPLIED INTELLIGENCE, 2023, 53 (20) : 23426 - 23441
  • [9] STMT: Spatio-temporal memory transformer for multi-object tracking
    Songbo Gu
    Jianxin Ma
    Guancheng Hui
    Qiyang Xiao
    Wentao Shi
    Applied Intelligence, 2023, 53 : 23426 - 23441
  • [10] Exploring reliable infrared object tracking with spatio-temporal fusion transformer
    Qi, Meibin
    Wang, Qinxin
    Zhuang, Shuo
    Zhang, Ke
    Li, Kunyuan
    Liu, Yimin
    Yang, Yanfang
    KNOWLEDGE-BASED SYSTEMS, 2024, 284