The dual-channel convolutional neural network for rotating machinery fault diagnosis based on HHT and TMSST

被引:0
|
作者
Song, Yadi [1 ]
Wang, Haibo [1 ]
Zhao, Chuanzhe [1 ]
Wang, Ronglin [1 ]
Li, Pengtao [2 ]
机构
[1] College of Mechanical and Electrical Engineering, Jilin Institute of Chemical Technology, Jilin,132022, China
[2] College of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin,132022, China
来源
Engineering Research Express | 2024年 / 6卷 / 04期
关键词
Hilbert-Huang transform - Linear transformations - Rotating machinery - Rotors;
D O I
10.1088/2631-8695/ad9ce8
中图分类号
学科分类号
摘要
Fault diagnosis of rotating machinery is crucial for ensuring the reliability of industrial equipment, especially when dealing with nonlinear, non-stationary signals and limited sample data. This paper proposes a novel fault diagnosis method that combines the Hilbert-Huang Transform (HHT) and Time-frequency Manifold Singular Spectrum Transformation (TMSST) with a dual-channel Convolutional Neural Network (CNN). The method utilizes HHT and TMSST to convert raw signals into time-frequency images, which are then processed by the CNN to extract key features and classify fault types. This approach effectively addresses small-sample scenarios, enhancing the accuracy and robustness of rotor fault diagnosis. Additionally, the method incorporates standard deviation analysis to ensure reliable results over multiple runs, demonstrating stability under various conditions. © 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
引用
收藏
相关论文
共 50 条
  • [1] Fault Diagnosis of Rotating Machinery Based on Evolutionary Convolutional Neural Network
    Bai, Yihao
    Cheng, Weidong
    Wen, Weigang
    Liu, Yang
    SHOCK AND VIBRATION, 2022, 2022
  • [2] Rotating machinery fault diagnosis based on a novel lightweight convolutional neural network
    Yan, Jing
    Liu, Tingliang
    Ye, Xinyu
    Jing, Qianzhen
    Dai, Yuannan
    PLOS ONE, 2021, 16 (08):
  • [3] A Novel Fault Diagnosis Method for Rotating Machinery Based on a Convolutional Neural Network
    Guo, Sheng
    Yang, Tao
    Gao, Wei
    Zhang, Chen
    SENSORS, 2018, 18 (05)
  • [4] A Lighted Deep Convolutional Neural Network Based Fault Diagnosis of Rotating Machinery
    Ma, Shangjun
    Cai, Wei
    Liu, Wenkai
    Shang, Zhaowei
    Liu, Geng
    SENSORS, 2019, 19 (10)
  • [5] Application of adaptive convolutional neural network in rotating machinery fault diagnosis
    Li T.
    Duan L.
    Zhang D.
    Zhao S.
    Huang H.
    Bi C.
    Yuan Z.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2020, 39 (16): : 275 - 282and288
  • [6] Convolutional Neural Network Based Fault Detection for Rotating Machinery
    Janssens, Olivier
    Slavkovikj, Viktor
    Vervisch, Bram
    Stockman, Kurt
    Loccufier, Mia
    Verstockt, Steven
    Van de Walle, Rik
    Van Hoecke, Sofie
    JOURNAL OF SOUND AND VIBRATION, 2016, 377 : 331 - 345
  • [7] Rotating machinery fault diagnosis based on transfer learning and an improved convolutional neural network
    Jiang, Li
    Zheng, Chunpu
    Li, Yibing
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (10)
  • [8] Rotating machinery fault diagnosis based on convolutional neural network and infrared thermal imaging
    Yongbo LI
    Xiaoqiang DU
    Fangyi WAN
    Xianzhi WANG
    Huangchao YU
    Chinese Journal of Aeronautics , 2020, (02) : 427 - 438
  • [9] Intelligent fault diagnosis of rotating machinery based on a novel lightweight convolutional neural network
    Lu, Yuqi
    Mi, Jinhua
    Liang, He
    Cheng, Yuhua
    Bai, Libing
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART O-JOURNAL OF RISK AND RELIABILITY, 2022, 236 (04) : 554 - 569
  • [10] Fault Diagnosis of Rotating Machinery Based on Convolutional Neural Network and Singular Value Decomposition
    Liu, Dong
    Lai, Xu
    Xiao, Zhihuai
    Hu, Xiao
    Zhang, Pei
    SHOCK AND VIBRATION, 2020, 2020