Harmonic flow-field representations of quantum bits and gates

被引:0
|
作者
Patil, Vishal P. [1 ,2 ,3 ,6 ]
Kos, Ziga [1 ,3 ,4 ,5 ]
Dunkel, Jorn [1 ,3 ]
机构
[1] MIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Stanford Univ, Dept Bioengn, 475 Via Ortega, Stanford, CA 94305 USA
[3] Hiroshima Univ, Int Inst Sustainabil Knotted Chiral Meta Matter W, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 7398526, Japan
[4] Univ Ljubljana, Fac Math & Phys, Jadranska 19, Ljubljana 1000, Slovenia
[5] Jozef Stefan Inst, Dept Condensed Matter Phys, Jamova 39, Ljubljana 1000, Slovenia
[6] Univ Calif San Diego, Dept Math, 9500 Gilman Dr, La Jolla, CA 92093 USA
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 04期
关键词
TOPOLOGICAL DEFECTS; DYNAMICS; COMPUTATION; ALGORITHMS;
D O I
10.1103/PhysRevResearch.6.043039
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We describe a general procedure for mapping arbitrary n-qubit states to two-dimensional (2D) vector fields. The mappings use complex rational function representations of individual qubits, producing classical vector field configurations that can be interpreted in terms of 2D inviscid fluid flows or electric fields. Elementary qubits are identified with localized defects in 2D harmonic vector fields, and multiqubit states find natural field representations via complex superpositions of vector field products. In particular, separable states appear as highly symmetric flow configurations, making them both dynamically and visually distinct from entangled states. The resulting real-space representations of entangled qubit states enable an intuitive visualization of their transformations under quantum logic operations. We demonstrate this for the quantum Fourier transform and the period finding process underlying Shor's algorithm, along with other quantum algorithms. Due to its generic construction, the mapping procedure suggests the possibility of extending concepts such as entanglement or entanglement entropy to classical continuum systems, and thus may help guide new experimental approaches to information storage and nonstandard computation.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Josephson junction quantum bits and logic gates
    Makhlin, Y
    Schön, G
    Shnirman, A
    PHYSICA B, 2000, 280 (1-4): : 410 - 411
  • [2] Ballistic Aharonov-Bohm quantum bits and quantum gates
    Yu, Leo
    Voskoboynikov, Oleksandr
    SOLID STATE COMMUNICATIONS, 2008, 145 (9-10) : 447 - 450
  • [3] Predictive flow-field estimation
    Mokhasi, Paritosh
    Rempfer, Dietmar
    Kandala, Sriharsha
    PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (03) : 290 - 308
  • [4] Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits
    J. H. Plantenberg
    P. C. de Groot
    C. J. P. M. Harmans
    J. E. Mooij
    Nature, 2007, 447 : 836 - 839
  • [5] Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits
    Plantenberg, J. H.
    de Groot, P. C.
    Harmans, C. J. P. M.
    Mooij, J. E.
    NATURE, 2007, 447 (7146) : 836 - 839
  • [6] Flow-Field of an Axisymmetric Lobed Mixer
    I.Yimer
    S.Manipurath
    I.Campbell
    W.E.Carscallen
    JournalofThermalScience, 2004, (01) : 40 - 45
  • [7] Flow-field of an axisymmetric lobed mixer
    L. Y. Jiang
    I. Yimer
    S. Manipurath
    I. Campbell
    W. E. Carscallen
    Journal of Thermal Science, 2004, 13 : 40 - 45
  • [8] THE FLOW-FIELD DOWNSTREAM OF A HYDRAULIC JUMP
    HORNUNG, HG
    WILLERT, C
    TURNER, S
    JOURNAL OF FLUID MECHANICS, 1995, 287 : 299 - 316
  • [9] QUICK AND EASY FLOW-FIELD SURVEYS
    CROWDER, JP
    ASTRONAUTICS & AERONAUTICS, 1980, 18 (10): : 38 - &
  • [10] Flow-Field of an Axisymmetric Lobed Mixer
    Jiang, L. Y.
    Yimer, I.
    Manipurath, S.
    Campbell, I.
    Carscallen, W. E.
    JOURNAL OF THERMAL SCIENCE, 2004, 13 (01) : 40 - 45