Unveiling the fitness of Saccharomyces cerevisiae strains for lignocellulosic bioethanol: a genomic exploration through fermentation stress tests

被引:0
|
作者
My, Rebecca [1 ]
Gupte, Ameya Pankaj [1 ]
Bizzotto, Edoardo [2 ]
Frizzarin, Martina [3 ]
Antoniali, Paolo [3 ]
Campanaro, Stefano [2 ]
Favaro, Lorenzo [1 ,4 ]
机构
[1] Univ Padua, Dept Agron Food Nat Resources Anim & Environm DAFN, I-35020 Legnaro, Italy
[2] Univ Padua, Dept Biol, I-35131 Padua, Italy
[3] Italiana Biotecnol, I-36054 Montebello Vicentino, Italy
[4] Stellenbosch Univ, Dept Microbiol, Private Bag X1, Stellenbosch, South Africa
关键词
Bioethanol; Saccharomyces cerevisiae; Lignocellulosic biomass; Genomic variants; Fermentation; SNP; WINE FERMENTATION; YEAST STRAINS; INDUSTRIAL; TOLERANCE; GENES; DNA; POLYMORPHISMS; SEQUENCE; REVEALS; GLUCOSE;
D O I
10.1016/j.nbt.2024.12.004
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Lignocellulosic biomass holds significant promise as a substrate for bioethanol production, yet the financial viability of lignocellulosic fermentation poses challenges. The pre-treatment step needed for lignocellulosic substrates generates inhibitors that impede Saccharomyces cerevisiae growth, affecting the fermentation process and overall yield. In modern sugarcane-to-ethanol plants, a rapid succession of yeast strains occurs, with dominant strains prevailing. Therefore, yeast strains with both dominance potential and inhibitor tolerance are crucial towards the development of superior strains with industrial fitness. This study adopted a hybrid approach combining biotechnology and bioinformatics to explore a cluster of 20 S. cerevisiae strains, including industrial and oenological strains exhibiting diverse phenotypic features. In-depth genomic analyses focusing on gene copy number variations (CNVs) and single nucleotide polymorphisms (SNPs) were conducted and compared with results from fermentation tests once inoculated in multiple strains kinetics under stressing conditions such as low nitrogen availability and high formic or acetic acid levels. Some strains showed high resistance to biotic stress and acetic acid. Moreover, four out of 20 strains - namely S. cerevisiae YI30, Fp89, Fp90 and CESPLG05 - displayed promising resistance also to formic acid, the most impactful weak acids in pre-treated lignocellulosic biomass. These strains have the potential to be used for the development of superior S. cerevisiae strains tailored for lignocellulosic bioethanol production.
引用
收藏
页码:63 / 74
页数:12
相关论文
共 45 条
  • [1] 'Omics' technologies and systems biology for engineering Saccharomyces cerevisiae strains for lignocellulosic bioethanol production
    Pinel, Dominic
    Gawand, Pratish
    Mahadevan, Radhakrishnan
    Martin, Vincent J. J.
    BIOFUELS-UK, 2011, 2 (06): : 659 - 675
  • [2] Screening of Non- Saccharomyces cerevisiae Strains for Tolerance to Formic Acid in Bioethanol Fermentation
    Oshoma, Cyprian E.
    Greetham, Darren
    Louis, Edward J.
    Smart, Katherine A.
    Phister, Trevor G.
    Powell, Chris
    Du, Chenyu
    PLOS ONE, 2015, 10 (08):
  • [3] Mating of natural Saccharomyces cerevisiae strains for improved glucose fermentation and lignocellulosic inhibitor tolerance
    Trudy Jansen
    Justin Wallace Hoff
    Neil Jolly
    Willem Heber van Zyl
    Folia Microbiologica, 2018, 63 : 155 - 168
  • [4] Mating of natural Saccharomyces cerevisiae strains for improved glucose fermentation and lignocellulosic inhibitor tolerance
    Jansen, Trudy
    Hoff, Justin Wallace
    Jolly, Neil
    van Zyl, Willem Heber
    FOLIA MICROBIOLOGICA, 2018, 63 (02) : 155 - 168
  • [5] Saccharomyces cerevisiae strains performing similarly during fermentation of lignocellulosic hydrolysates show pronounced differences in transcriptional stress responses
    Camara, Elena
    Mormino, Maurizio
    Siewers, Verena
    Nygard, Yvonne
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2024, 90 (05)
  • [6] Screening and construction of Saccharomyces cerevisiae strains with improved multi-tolerance and bioethanol fermentation performance
    Zheng, Dao-Qiong
    Wu, Xue-Chang
    Tao, Xiang-Lin
    Wang, Pin-Mei
    Li, Ping
    Chi, Xiao-Qin
    Li, Yu-Dong
    Yan, Qing-Feng
    Zhao, Yu-Hua
    BIORESOURCE TECHNOLOGY, 2011, 102 (03) : 3020 - 3027
  • [7] Developing Saccharomyces cerevisiae strains for second generation bioethanol: Improving xylose fermentation and inhibitor tolerance
    Almeida, Joao R. M.
    Hahn-Hagerdal, Barbel
    INTERNATIONAL SUGAR JOURNAL, 2009, 111 (1323): : 172 - 180
  • [8] Lignocellulosic Bioethanol Production of Napier Grass Using Trichoderma reesei and Saccharomyces cerevisiae Co-Culture Fermentation
    Mueansichai, Thirawat
    Rangseesuriyachai, Thaneeya
    Thongchul, Nuttha
    Assabumrungrat, Suttichai
    INTERNATIONAL JOURNAL OF RENEWABLE ENERGY DEVELOPMENT-IJRED, 2022, 11 (02): : 423 - 433
  • [9] Designing robust Saccharomyces cerevisiae strains against stresses encountered during bioethanol fermentations from lignocellulosic biomass
    Kumar, Vinod
    Greetham, Darren
    Wimalasena, Tithira
    NEW BIOTECHNOLOGY, 2014, 31 : S3 - S3
  • [10] Optimization of submerged fermentation conditions to overproduce bioethanol using two industrial and traditional Saccharomyces cerevisiae strains
    Shaghaghi-Moghaddam, Reza
    Jafarizadeh-Malmiri, Hoda
    Mehdikhani, Parviz
    Alijanianzadeh, Reza
    Jalalian, Sepide
    GREEN PROCESSING AND SYNTHESIS, 2019, 8 (01) : 157 - 162